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FOREWORD 

 

The Self Learning Material (SLM) is written with the aim of providing 

simple and organized study content to all the learners. The SLMs are 

prepared on the framework of being mutually cohesive, internally 

consistent and structured as per the university‘s syllabi. It is a humble 

attempt to give glimpses of the various approaches and dimensions to the 

topic of study and to kindle the learner‘s interest to the subject 

 

We have tried to put together information from various sources into this 

book that has been written in an engaging style with interesting and 

relevant examples. It introduces you to the insights of subject concepts 

and theories and presents them in a way that is easy to understand and 

comprehend.  

 

We always believe in continuous improvement and would periodically 

update the content in the very interest of the learners. It may be added 

that despite enormous efforts and coordination, there is every possibility 

for some omission or inadequacy in few areas or topics, which would 

definitely be rectified in future. 

 

We hope you enjoy learning from this book and the experience truly 

enrich your learning and help you to advance in your career and future 

endeavours. 
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BLOCK-1 ALGEBRAIC TOPOLOGY 
 

Introduction to block 

Algebraic Topology is an important branch of topology having several 

connections  with many areas of modern mathematics. Its growth and 

influence,  particularly since the early forties of the twentieth century, 

has been remarkably  high.  

It is best suited for those who have already had an introductory course in 

topology as  well as in algebra. Experience suggests that a 

comprehensive coverage of the topology  of simplicial complexes, 

simplicial homology of polyhedra, fundamental groups,  covering spaces 

and some of their classical applications like invariance of dimension  of 

Euclidean spaces, Brouwer‘s Fixed Point Theorem, etc. are the essential 

minimum  which must  find a place in a beginning course on algebraic 

topology. Having learnt these  basic concepts and their powerful 

techniques, one can then go on in any  direction of the subject at an 

advanced level depending on one‘s interest and  requirement.  We 

introduce important examples of topological spaces in unit-1 and study 

the  fundamental groups and its properties in Unit 2 and 3. Starting with 

the concept of  pointed spaces we show that the fundamental groups are 

topological invariants of path-  connected spaces. After computing the 

fundamental group of the circle, we show how  it can be used to compute 

fundamental groups of other spaces by geometric methods.  In chapter 4 

& 5 we explain about CW- complexes and CW- homotopy
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UNIT-1  IMPORTANT EXAMPLES OF 

TOPOLOGICAL SPACES 
 

STRUCTURE 

1.0 Objective  

1.1 Introduction 

1.2 Euclidian space, spheres, disks 

1.3 Real projective spaces 

1.4 Complex projective spaces 

1.5 Grassmannain manifolds 

1.6 Constructions 

1.6.1 Product 

1.6.2 Cylinder, Suspension, 

1.6.3 Spaces of maps, loop spaces, path spaces 

1.6.4 Pointed spaces 

1.7 Let us sum up 

1.8 Keyword 

1.9 Questions for review 

1.10 Suggested readings and references 

1.11 Answers to check your progress 

1.0 OBJECTIVE 
 

In this unit we will learn about Euclidian space, spheres, Real projective 

spaces, Complex projective spaces, Grassmannain manifolds, 

Constructions, Product, Cylinder, spaces of maps, loop spaces, path 

spaces and Pointed spaces. 

1.1 INTRODUCTION 

A topological space is a set endowed with a structure, called a topology, 

which allows defining continuous deformation of subspaces, and, more 

generally, all kinds of continuity. Euclidean spaces, and, more 

generally, metric spaces are examples of a topological space, as any 

distance or metric defines a topology. The deformations that are 

https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Continuity_(mathematics)
https://en.wikipedia.org/wiki/Euclidean_space
https://en.wikipedia.org/wiki/Metric_space
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considered in topology are homeomorphisms and homotopies. A 

property that is invariant under such deformations is a topological 

property. Basic examples of topological properties are: the dimension, 

which allows distinguishing between a line and a surface; compactness, 

which allows distinguishing between a line and a circle; connectedness, 

which allows distinguishing a circle from two non-intersecting circles. 

1.2 EUCLIDIAN SPACE, SPHERES, DISKS 
 

The notations ,n nR C have usual meaning throughout the course. The 

space  nC is identified with  2nR by the correspondence 

 
1 1 1( ,..., ) ( ,..., , ).n n n nx iy y ix x x y    

The unit sphere in  1nR  centered in the origin is denoted by  ,nS the unit 

disk in  nR by  ,nD and the unit cube in nR by  .nI Thus  1nS  is the 

boundary of the disk  .nD  Just in case we give these spaces in 

coordinates: 

   1 2 2

1 1( ,..., ) ... 1 ,n n

n nS x x R x x       

(1)                                      

 2 2

1 1( ,..., ) ... 1 ,n n

n nD x x R x x      

  1( ,..., ) 0 1, 1,..., .n n

n jI x x R x j n      

The symbol  x R is a sequence of points  

1( ,..., ,...), 0n n jx x x where x Rand x    for  j  greater then some  .k  

Topology on   R is determined as follows. A set  F R is closed in nR

.In a similar way we define the spaces  C and  .S   

Exercise 1.1. Let  
(1) ( )

1( ,0,...,0,...),..., (0,0,..., ,...),...n

nx a x a  be a 

sequence of elements in R . Prove that the sequence   ( )nx converges in 

R if and only if the sequence of numbers   na  is finite. 

https://en.wikipedia.org/wiki/Homeomorphism
https://en.wikipedia.org/wiki/Homotopy
https://en.wikipedia.org/wiki/Topological_property
https://en.wikipedia.org/wiki/Topological_property
https://en.wikipedia.org/wiki/Topological_dimension
https://en.wikipedia.org/wiki/Line_(geometry)
https://en.wikipedia.org/wiki/Surface_(mathematics)
https://en.wikipedia.org/wiki/Compact_(topology)
https://en.wikipedia.org/wiki/Connectedness
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Probably you already know the another version of infinite –dimensional 

real space, namely the Hilbert space  
2
(which is the set of sequences  

 nx  so that the series   nn
x converges). The space 

2
is a metric 

space, where the distance     ( , )n np x y   is defined as 

    2( , ) ( ) .n n n nn
p x y y x   

Clearly there is a natural map  
2.R   Remark. The optional exercises 

are labelled by Exercise 1.2. Is the above map 
2.R  homeomorphism 

or not ? Consider the unit cube  I  in the spaces  

  2, , . . 0 1 .n nR i e I x x      Exercise 1.3. Prove or disprove that the 

cube I   is compact space  
2( ).in R or We are going to play a little bit 

with the sphere  nS . Claim 1.1. A punctured sphere   0\nS x is 

homeomorphic to  nR . Proof. We construct a map   0: \n nf S x R  

which is known as stereographic projection. Let nS be given as above 

(1).Let the point  
0x  be the North Pole, so it has the coordinates   

1(0,...,0,1) .nR   Consider a point  1 1 0( ,..., ) , ,n

nx x x S x x    and the 

line going through the points  
0.x and x  A directional vector of this line 

may be given as  1( ,..., ,1 1),n nx x x      so any point o f this line 

could be written as 

 
1 1 1 1(0,...,0,1) ( 1 ) ( ,..., ,1 (1 )).n n nt x x tr tx t x          

The intersection point of this line and    1

1( ,..., ,0)n n

nR x x R    is 

determined by vanishing the last coordinate. Clearly the last coordinate 

vanishes if  
1

1

1 .n

t
x 

 


 The map   : \n nf S pt R  is given by 

 1
1 1

1 1

: ( ,..., ) ,..., ,0 .
1 1

n
n

n n

xx
f x x

x x


 

 
  

  
 

The rest of the proof is left to you. 
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Figure 1. Stereographic projection 

 

We define a hemisphere   2 2

1 1 1... 1& 0 .n

n nS x x x        

Exercise 1.4.Prove the that  n nS and D
are homoeomorphic. 

1.3  REAL PROJECTIVE SPACES 
 

A real projective space  nRP  is a set of all lines in  1nR   going through  

10 .n nR Let RP  be a line, then we define a basis for topology on 

nRP as follows: 

  1 1( )U theanglebetween and less than    

Exercise 1.5. A projective space  
1RP is homeomorphic to the circle  1.S  

Let  
1 1( ,..., )nx x 

be coordinates of a vector parallel to  , then the vector  

1 1
( ,..., )nx x  

defines the same line   ( 0).for   We identify all these 

coordinates, the equivalence class is called homogeneous coordinates  

1 1( : ... : )nx x 
.Note that there is at least one  

ix  which is not zero. Let 

  1 1 2( :...: ) 0 n

j nU x x x RP     

Then we define the map  :R n

j jf U R  by the formula 

 
1 1 11 2

1 1( : ... : ) , ,..., ,1, ,..., .
j j n

n

j j j j i

x x xx x
x x

x x x x x

  


 
   

 

 

Remark. The map  
R

jf  is a homeomorphism; it determines a local 

coordinate system in  nRP  giving this space a structure of smooth 

manifold of dimension n. 

There is natural map  : n nc S RP which sends each point  

1 1( ,..., ) n

ns s s S   to the line going through zero and s  Note that there 

are exactly two points   s and s  which map to the same line .nRP  



Notes 

10 

We have a chain of embeddings. 

 1 2 1... ...,n nRP RP RP RP       

We define 
1

n

nRP U RP

 with the limit topology (similarly to the above 

case of   ).R  

1.4 COMPLEX PROJECTIVE SPACES 
 

Let  nCP be the space of all complex lines in the complex space  1.nC  In 

the same way as above we define homogeneous coordinates  

1 1( : ... : )nz z 
 for each complex line  ,nCP and the Local coordinate 

system‖. 

  1( :...: ) 0 .n

i n iU z z z CP     

Clearly there is a homomorphism  
1: .C n

i if U C   

Exercise 1.6. Prove that the projective space  
1CP  is homeomorphic to 

the sphere  2.S  Consider the sphere  2 1 1.nS C   Each point 

 
2 22 1

1 1 1 1( ,..., ) , ... 1n

n nz z z S z z

       

Of the sphere  2 1S   determines a line  1 1( : ... : ) .n

nz z CP  Observe 

that the point  
2 1

1 1( ,..., )i i i n

ne z e z e z S   

  determines the same 

complex line  .nCP  We have defined the map  2 1( ) : .n ng n S CP   

Exercise 1.7. Prove that the map  2 1( ) : n ng n S CP  has a property that  

1 1( ) ( ) .ng n S for any CP    

The case n=1 is very interesting since  1 2 ,CP S  here we have the map  

3 2(1) :g S S where  1 1(1) ( )g x S   for any  2.x S This map is the 

Hopf map, it gives very important example of nontrivial map  3 2.S S  

Exercises 1.8. Prove that  ,n nRP CP are compact and connected spaces. 

Besides the reals R and complex numbers C there are quaternion 

numbers H. Recall that  qH may be thought as a sum  

, , , , ,q a ib jc kd wherea b c d R      and the symbols  , ,i j k  satisfy 

the identifies: 

 2 2 2 1, , , .i j k ij ji k jk kj i ki ik j              
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Then two quaternions  
1 1 1 1 1 2 2 2 2 2q a ib jc kd and q a ib jc kd         

may be multiplied using these identities. The product here is not 

commutative, however one choose left or right multiplication to define a 

line in  1.nH   A set of all quaternionic lines in 1nH  is the quaternion 

projective space  .n
HP  

Exercise 1.9. Give details of the above definition. In particular, check 

that the space n
HP  is well-defined. Identify the quaternionic line  1

HP  

with some well-known topological space. 

1.5 GRASSMANNIAN MANIFOLDS     
 

These spaces generalize the projective spaces. Indeed, the space  ( , )G n k  

is a space of all k-dimensional vector subpaces of  .nR with natural 

topology. Clearly  1( ,1) .G n RP  It is not difficult to introduce local 

coordinates in ( , )G n k . Let  ( , )n G n k  be a k -plane. Choose  k  linearly 

independent vectors  1,..., :n

nv e of R  

 

11 1

1

...

. . .

. . .

. . .

...

n

k kn

a a

A

a a

 
 
 
 
 
 
 
 

 

Since the vectors  
1,..., k  are linearly independent there exist k  columns 

of the matrix A which are linearly independent as well. In other words, 

there are indices  
1,..., k  so that a projection of the plane   on the  

1,...,i ikk plane e e  generated by the coordinate vectors 
1,...,i ike e is a 

linear isomorphism. Now it is easy to introduce local coordinates on the 

Grassmanian manifold indeed, choose the indices 

1 1,..., ,1 ... ,k ki i i i n    and consider all   ( , )k planes G n k  so that 

the projection of  on the plane  
1( ,..., )i ike e is a linear isomorphism. We 

denote this set of  
1,..., .i kk planesbyU i  

Exercise 1.10. Construct a homeomorphism  
( )

1,..., 1,...,: .k n k

i ik i ikf U R   

The result of this exercise shows that the Grassmannian manifold  

( , )G n k is a smooth manifold of dimension  ( ).k n k  The projective 
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spaces and grassmannian manifolds are very important examples of 

spaces which we will see many times in our course. 

Exercise 1.11. Define a complex Grassmannian manifold  ( , )CG n k  and 

construct a local coordinate system for ( , )CG n k . In Particular, find its 

dimension. 

We have a chain of spaces 

 ( , ) ( 1, ) ... ( , ) ( _1, ) ....G k k k k G n k G n k       

Let ( , )G k be the union (inductive limit) of these spaces. The topology 

of ( , )G k  is given in the same way as to  : ( , )R a set F G k    is 

closed if and only if the intersection ( , )F G n k is closed for each  n . 

This topology is known as a topology of an inductive limit. 

Exercise 1.12. Prove that the Grassmannian manifolds ( , )G n k  and 

( , )CG n k are compact and connected. 

1.5 Flag manifolds. Here we just mention these examples without further  

considerations (we are not ready for this yet). Let  
11 ... 1.sk k n      

A flag of the type 
1( ,..., )sk k  is a chain of vector subspaces  

1 ... n

sV V of R   such that dim  
1 .iV k  A set of flags of the given type 

is the flag manifold 
1( ; ,.... ).sF n k k Hopefully we shall return to these 

spaces they are very interesting and popular creatures. 

Classic Lie groups. The first example here is the group  ( )nGL R  of non 

generated linear transformations of  .nR Once we choose a basis  

1,..., ,n

ne e of R each element  ( )nA GL R  may be identified with an  

n n  matrix. A with det  0.A  Clearly we may identify the space of all 

n n  matrices with the space  2nR . The determinant gives a continuous 

function  2det : ,nR R and the space ( )nGL R is an open subset of 2nR . 

 
2 1( ) \ det (0).n nGL R R   

 We note that the group ( )O n acts on the spaces  ( , ) ( , )V n k and G n k

:indeed, if  

 ( )O n  and  
1,..., k   is an orthonormal ,k frame then  

1( ),... ( )k    is also an orthonormal .k frame  As for the 

Grassmannian manifold, one can easily see that   ( )  is a K-

dimensional subspace in  ( ) ( )O k O n k   
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The group ( )O n contains a subgroup  ( )O j which acts on  ,j nR R

where  
1, ,...,j

jR e e is generated by the first  j vectors  1,..., je e  of the 

standard basic  
1,..., ne e of  nR .Similarly  ( )U n act on the spaces  

( , )CG n k and   ( , ), ( )GV n k andU j is a subgroup of  ( )U n . 

Exercise 1.20. Prove the following homeomorphisms: 

(a)   1 ( ) / ( 1) ( ) / ( 1),nS O n O n SO n SO n      

(b)  1 ( ) / ( 1) ( ) / ( 1),nS U n U n SU n SU n      

(c)  ( , ) ( ) / ( ) ( ),G n k O n O k O n k    

(d)   ( , ) ( ) / ( ) ( ).CG n k U n U k U n k    

We note here that ( ) ( )O k O n k   is a subgroup of  ( )O n  of orthogonal 

matrices with two diagonal blocks of the sizes  ( ) ( )k k and n k n k   

and zeros otherwise. 

There is also the following natural action of the orthogonal group  ( )O k

on the Stieffel manifold  ( , )V n k ,Let  
1( ,..., )k 

be on orthogonal 

.k frame  then ( )O k acts on the space   1,..., kV   ,in particular if 
 
  

1( ),..., ( )k     is also  an orthogonal  k frame  similarly there is 

natural action of  ( )U k on   ( , )CV n k . 

Exercise 1.21 Prove that the above actions of  ( )O k on  ( , )V n k  and of  

( )U k  on  

    ( , )CV n k are free. 

Exercise 1.22  Prove the following homeomorphisms; 

(a)   ( , ) / ( ) ( , ),V n k O k G n k  

(b)   ( , ) / ( ) ( , ).CV n k U k CG n k  

There are obvious maps  ( , ) ( , ), ( , ) ( , )p pV n k G n k CV n k CG n k 

(where each orthonormal  
1,..., kk frame   maps to the  

1,..., kk plane     generated by this frame).It is easy to see that the 

inverse image  1( )p   may be identified with ( )O k  (in the real case) 

and  ( )U k (in the complex case). We shall return to these space later on. 

In particular, we shall describe a cell-structure of these spaces and 

compute their homology and cohomology groups. 
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 Surfaces. Here I refer to Chapter 1 of Massey, Algebraic topology, for 

details. I would  like for you to read this Chapter carefully even though 

most of you have seen this material  before. Here I briefly remind some 

constructions and give exercises. The section 4 of the reffered Massery 

book gives the examples of surfaces. In particular, the torus 2T is 

described in three different ways. 

 1 1( ) .a A product S S  

(b) A subspace of   3R given by :   

 3 2 2 2 2( , , ) ( 2) 1 .x y z R x y z      

(c) A unit square   2 2( , ) 0 1,0 1I x y R x y       with the 

identification: 

 ( ,0) ( ,1) (0, ) (1, ) 0 1, 0 1.x x y y for all x y       

Exercise 1.23. Prove that the space described in  ( ), ( ), ( )a b c are indeed 

homeomorphic. 

 

The next surface we want to become our best friend is the projective 

space 2.RP  Earlier we defined  2 2 2 2( , ) 1D x y R x y    as a space 

of lines in  3R going through the origin. 

Exercise 1.24. Prove that the projective plane 2RP is homeomorphic to 

the following spaces: 



Notes 

15 

(a) The unit disk   2 2 2 2( , ) 1D x y R x y    with the opposite  points   

( , ) ( , )x y x y   of the circle   1 2 2 2 2( , ) 1S x y R x y D      have 

been identified 

(b) The unit square, see fig.3, with the arrows a and b identified as it is 

shown. 

(c) The Mebius band which boundary (the circle) is identified with the 

boundary of disk  

 2 , .3.D see Fig  

 

Here the Mebius band is constructed from a square by identifying the 

arrows a. The Klein bottle 2Kl  may be described a s a square with 

arrows identified as it is shown in Fig.3. Exercise 1.25. Prove that the 

Klein bottle 2Kl is homeomorphic to the union of two Mebius bands 

along the circle. Massey carefully defines connected sum  
1 2#S S  of two 

surfaces  
1 2S and S . 

Exercise 1.26. Prove that   2 2#Kl RP is homeomarphic to 2 2#RP T  

Exercise 1.27. Prove that  2 21 #K Rl   is homeomarphic to 2Kl . 

Exercise 1.28. Prove that   2 2#RP RP   is homeomarphic to 2Kl . 

1.6 CONSTRUCTIONS 

 

1.6.1 Product 
Recall that a product ,X Y of X Y is a set of pairs  

( , ), , . ,x y x X y Y If X Y   are topological spaces then a basis for 

product topology on  X Y is given by the products  

, ,U V whereU X V Y   are open. Here are the first examples. 
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Example. The torus  1 1... .nT S S    Note that the torus  nT may be 

identified with  (1) ... (1) ( )U U U n    (diagonal orthogonal complex 

matrices). 

Exercise 1.7 Consider the surface  5 ,X in S  given by the equation 

 
1 0 2 5 3 4 0x x x x x x    

(where  5 5S R  is given by  
2 2

1 6... 1).x x    Prove that  2 2.X S S   

Exercise Prove that the space  (4)SO  is homeomorphic to  3 3S RP . 

Hint: Consier carefully the map  3(4) (4) / (3)SO S SO SO   and use 

the fact that  3S  has natural group structure: it is a group of unit 

quaternions .It should be emphasized that it is not true that 

1( ) ( 1) 4.nSO n S SO n if n     

We note also that there are standard projections  

,y X p YX Y X and X Y Y      and to give a map  :f Z X Y   

:f Z X Y  is the same as to give two maps  

: : .x yf Z X and f Z Y   

1.6.2 Cylinder, suspension  
Let  [0,1] ,I R   The space  X I  is called a cylinder over X, and the 

subspaces     0 , 1X X   are the bottom and top ―bases‖. Now we will 

construct new spaces out of cylinder .X I . 

Remark: quotient topology. Let  " "R  be an equivalence relation on the 

topological space  .X We denote by  /X R the set of equivalence classes. 

There is a natural map (not continuous so far)  : / .p X X  We define 

the following topology on /X R : the set  /U X R  is open if and only 

if  1( )P U is open. This topology is called a quotient topology. 

The first example: let  A X be a closed set. Then we define the relation 

" "R on  X as follows     :denoteanequivalenceclass  

  
 x if x

x



,

.

A

A if x A





 

The space  /X  is denoted by / .X A  

The space   ( ) 1/ 1C X X X    is a cone over  .X A suspention  
nS  

are homeomorphic to  1nD   and  1nS   respectively. 
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Here is a picture of these spaces. 

 

Glueing: Let  X and Y  be topological spaces,  :A Y and A X   be 

a map. We consider a disjoint union  ,X Y and then we identify a point  

a A  with the point  ( ) .a X   The quotient space   /X Y R  under 

this identification will be denoted as  ,X Y and this procedure will be 

called glueing  X and Y by means of   . There are two special cases of 

this construction. 

Let  :f X Y  be a map. We identify  X with the bottom base   0X   

of the cylinder  1.X  The space  1 ( )fX Y Cyl f    is called a 

cylinder of the map  .f  the space  ( ) fC X Y  is called a cone of the 

map  .f  Note that the space  ( )Cyl f  contains   X and Y as subspaces, 

and the space  ( )C f  contains  .X  

 

 

Let  : n nf S RP  be the (we have studied before) map which takes a 

vector  nS  to the line    spanned by   .  
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Claim: The cone  ( )C f  is homeomorphic to the projective space  1.nRP   

Proof (outline). Consider the cone over  1, ( )n n nS clearlyC S D    

Now the cone ( )C f  is a disk  1nD   with the opposite points of  nS  

identified. See Fig. 6. 

In particular, a cone of the map  1 1 1:f S S RP   (given by the formula  

2 )i ie e   coincides with the projective plane  2.RP  

Exercise: Prove that a cone  ( )C h  of the Hopf map  2 1: n nh S CP   is 

homeomorphic to the projective space  1.nCP   

Here is the construction which should help you with previous exercise 

.Let us take one more look at the Hopf map  2 1: :k kh S CP   we take a 

point  
2 22 1

1 1 1 1( ,..., ) , ( ... 1),k

k kz z S where z z

     then  h  takes it to 

the line  1 1( :...: ) .k

kz z CP   Moreover  
' '

1 1 1 1( ... ) ( ,..., )k kh z z z z  if and 

only if  
' .i

j jz e z  This we can identify kCP with the following quotient 

space: 

(2)  2 1 /k kCP S R , where 
' ' '

1 1 1, 1( ,..., ) ( ..., ). 

 

i i

k kz z R e z e z  

Non consider a subset of lines in  kCP  where the last homogeneous 

coordinate is       nonzero: 

 1 1 1 1( :...: ) 0 .k k kU z z z     

 We already know that  
1kU 
 is homeomorphic to  kC  by means of the 

map 

 1 1
1 1

1 1

( : ... : ) ,...,k

k k

z z
z z

z z


 

 
 
 

 



Notes 

19 

Now we use (2) to identify 
1kU 
 with an open disk  2k kD C as follows. 

Let us think about 
1kU 
 2 1 / kS R  as above. Let  

1.kU  Choose a 

point  2 1

1 1( :...: ) k

kz z S 

  representing  . Then we have that 

 
2 2

2

1 ... 1kz z r     

Which describes the sphere  
2 1

21

kS k
r C



  of radius  
21 .r The union of 

the spheres 
2 1

21

kS
r



 over  0 1r   is nothing but an open unit disk in  

.kC  Then we notice that we can let  
1kz 
 to be equal to zero:  

1 0kz    

corresponds to the points 

 
2 22 1

1( ,..., ,0) ... 1,k k kz z S with z z     

i.e. the sphere  2 1 kS C   modulo the equivalence relation   

1 , 1( ,..., 0) ( ,..., ,0). i i

k kz z R e z e z This is nothing but eh projective space  

1kCP  . We summarize our construction: 

lemma2.1. There is a homeomorphism 

 2 / ,k kCP D R  

Where   
' '

1( ,..., ) ( ,..., )k j jz z R z z if and onlyif  

  1 1

2 22 2 ' '

1 ... 1, ... 1,kz z z z and       

 
' i

j jz e z                     1,..., .for all j k  

join. A join  *X Y  of spaces  X Y  is a union o fall linear paths  ,x yI  

starting at  x X and ending at  ;y Y  the union is taken over all points  

x X  and  .y Y  For example, a joint of two intervals  
1 2I and I  lying 

on two non-parallel and non-intersecting lines is terrahedron: A formal 

definition of *X Y  is the following. We start with the product 
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 :X Y I   here there is a linear path  ( , , ),x y t t I  for given points  

, .x X y Y   Then we identify the following points: 

 1( , ,1) ( , ,1)nx y R x y for any  1, , ,nx Y y y Y   

 ' "( , ,0) ( , ,0)x y R x y  for any   ' ", , .x x X y Y   

Exercises 2.5 prove the homeomorphisms 

  ( ) * int ( ) :a X one po C X  

  ( ) * int ( ) :b X two po s X  

 1 1 1 3( ) * . int : * .n k n kc S S S H prove first that S S S    

1.6.3 Spaces of maps, loop spaces, path spaces 
 

Let  ,X Y are topological spaces. We consider the space  ( , )C X Y  of all 

continuous maps from  .X toY  To define a topology of the functional 

space ( , )C X Y  it is enough to describe a basis. The basis of the compact-

open toplogy is given as follows. Let  K X  be a compact set, and  

O Y  be an open set. We denote by  ( , )U K O  the set of all continuous 

maps  :f X Y  such that  : ( ) ,f K Y  this is (by definition) a basis 

for the compact-open topology on ( , )C X Y . 

Examples. Let  X  be a point, Then the space ( , )C X Y  is homeomorphic 

to  ,Y If X  be a space consisting of  n  points, then  

( , ) ... ( ).C X Y Y Y ntimes    
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Let  , ,X Y and Z  be Hausdorff and locally  1compact  topological spaces. 

There is a natural map 

 : ( , ( , )) ( , ),T C X C Y Z C X Y Z   

Given by formula:     : ( , ) ( , ) ( ( ))( ) .f X C Y Z x y f x y    

Exercise: Prove that the map  : ( , ( , )) ( , )T C X C Y Z C X Y Z   is a 

homeomorphism. 

1
 A topological space  X is called locally compact if for each point 

x X and an open neighbourhood  U of X  there exists an open 

neighbourhood  V U  such that the closure  V of V  is compact. 

Recall we call a map :f I X a path, and the points  
1(0) (1)f f x 

are the beginning and the end points of the path  f . The space of all 

paths  ( , )C I X  contains two important subspaces: 

 
0 11. ( , , )X x x  is the subspace of paths  :f I X  such that  

0 1(0) (1) ;f x and f x   

  
02. ( , )X x  is the subspace of all paths with  

0x  the beginning point. 

 0 0, 03. ( , ) ( , )X x X x x  is the loop space with the beginning point 
0x . 

Exercise: Prove that the spaces '( , ) ( , )n nS x and S x  are homeomorphic 

for any points  ', .nx x S  

Exercise: Give examples of a space  X other than  nS  for which  

( , )X x  and  '( , )X x  are homeomorphic for any points  ', .x x X  

Why does it fail for an orbitrary space  ?X  Give an example when this 

is not true. 

The loop spaces ( , )X x are rather difficult to describe even in the case 

of  ,nX S  however, the spaces  ( , )X and X x  are intimately related. 

To see that, consider the following map (3) 

0: ( , )p X x X   
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Which sends a path  
0: , (0) ,f I X f x   to the point  (1).x f  Notice 

that  
1

0( ) ( , ).op x X x   The map (3) may be considered as a map of 

pointed spaces (se the definitions below): 

 
0: ( ( , ),*) ( ,*),p X x X   

Where the path  *: I X  sends the interval to the point  
0*( )t x  for all  

.t I  Clearly  
0(*) .p x  

1.6.4 Pointed spaces 
A pointed space  

0( , )X x  is a topological space  X  together with a base 

point  
0 .x X  A map 

0 0: ( , ) ( , )f X x Y y is a continuous map  

:f X Y  such that  
0 0( ) .f x y  Many operations preserve base points, 

for example the product  X Y  of pointed spaces 
0( , )X x , 

0( , )Y y  have 

the base point  
0 0( , ) .x y X Y  Some other operations have to be 

modified. 

The cone   0 0( , ) ( ) / :C X x C X x I   here we identify with the point all 

interval over the base point  0,x and the image of   0 0( , )x I inC X x is 

the base point of this space. 

The suspension: 

     0 0 0 0( , ) ( ) / ( ) /( 0 ) ( , ) /( 0 ).X x X x I C X X Ux I C X x X       
 

The space of maps  
0 0( , , , )C X x Y y  for pointed spaces 

2

0( , )X x and 

0( , )Y y  is the space of continuous maps  :f X Y  such that  

0 0: ( )f x y  (with the same compact-open topology). The base point in 

the space  ( , )C X Y   is the map  :c X Y  which sends all space  X to 

the point  
0 .y Y  

If  X  is a pointed space, then  
0( , )X x is the space of loops beginning 

and ending at the bas point  
0 ,x X  and the space  

0( , )X x is the space 

of paths starting at the base point 0,x
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Check Your Progress 

1. Prove: The cone    is homeomorphic to the projective space    

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

2. Explain about space, spheres and disks. 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

3.   Explain about Real projective spaces. 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

1.7 LET US SUM UP 
 

1. The notations ,n nR C have usual meaning throughout the course. The 

space  nC is identified with  2nR by the correspondence 

 
1 1 1( ,..., ) ( ,..., , ).n n n nx iy y ix x x y    

2. A real projective space  nRP  is a set of all lines in  1nR   going 

through  10 .n nR Let RP  be a line, then we define a basis for 

topology on nRP as follows: 

 
 1 1( )U theanglebetween and less than  

 

3. Let  " "R  be an equivalence relation on the topological space  .X We 

denote by  /X R the set of equivalence classes. There is a natural map 

(not continuous so far)  : / .p X X  We define the following topology 

on /X R : the set  /U X R  is open if and only if  1( )P U is open. This 

topology is called a quotient topology. 
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4. A pointed space  
0( , )X x  is a topological space  X  together with a 

base point  
0 .x X  A map 

0 0: ( , ) ( , )f X x Y y is a continuous map  

:f X Y  such that  
0 0( ) .f x y  

1.8 KEY WORDS 
 

 Euclidian space 

Real projective spaces 

Complex projective spaces 

Topology  

Quotient topology 

1.9 QUESTIONS FOR REVIEW 
 

1. Explain about Complex projective spaces. 

2. Explain about Grassmananian manifolds. 

3. Explain about Space of maps, loop spaces, path spaces. 

1.10 SUGGESTIVE READINGS AND 

REFERENCES 
 

1. Algebraic Topology – Satya Deo 

2. Lectures notes in Algebraic Topology- James F. Davis Paul Kirk 

3. Introduction to Algebraic Topology and Algebraic Geometry- U. 

Bruzzo 

4. Notes on the course : Algebraic Topology- Boris Botvinnik 

 5. R. Bott & L. Tu, Differential Forms in Algebraic Topology, Springer-

Verlag, New York 1982. 

 6.  B. Gray, Homotpy theory, Academic Press, New York 1975. 

7. M.J. Greenberg,Lectures on Algebraic Topology, Benjamin, New 

York 1967. 

8.  P.A.Griffiths & J.Harris, Principles of Algebraic Geometry. Wiley, 

New York 1994. 

9.  R. Harshorne, Algebraic geometry, Springer-Verlag,newYork1977. 
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10. P.J.Hilton & U&.Stammbach,A Course in Homological Algebra, 

Springer-Verlag, NewYork 1971. 

11. F.hirzebruch, Topological Methods in Algebraic Geometry, Springer-

Verlag,Berlin 1966. 

 12.  S.Kobayashi,differential Geometry of Complex Vector Bundles, 

Princeton University Press, Princeton 1987. 

13.  W.S.massey,Exact couples in algebraic topology, I,II 

14. E.H.Spanier,Algebraic topology, Corrected repreint, Springer-Verlag, 

New York-Berlin 1981. 

1.11 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. See section 1.2 

2. See section 1.2 

3. See section 1.3 
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UNIT-2 THE FUNDAMENTAL 

GROUP 
 

STRUCTURE 

2.0 Objective 

2.1. Introduction 

2.2 Homotopy 

2.3 Contractible space and homotopy 

2.4 Let us sum up 

2.5 Key words 

2.6 Questions for review 

2.7 Suggested readings and references 

2.8 Answers to check your progress  

2.0 OBJECTIVE 
 

In this unit we will learn and understand about homotopy, Contractible 

spaces and homotopy type, and important definitions and theorems and 

related exercise questions. 

2.1 INTRODUCTION 
 

Let X  be a topological space. Often we associate with  X an object that 

depends on X as well as on a point  x  of  X . The point x   is called a 

base point and the pair  ( , )X x  is called pointed space. If ( , )X x and  

( , )Y y are two pointed spaces, then  a continuous map  :f X Y  such 

that  : ( )f x y  is called a map between pointed spaces. Let :f X Y

: ( )f x y   be a homeomorphism and  x be a point of   X . Then f is a 

homeomorphism between pointed spaces. ( , )X x and   , ( )Y f x . The  
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composite of two maps  between pointed spaces is again a map between 

pointed spaces and the identity map ( , ) : ( , ) ( , )X xI X x X x  is always a 

homeomorphism of pointed spaces for each .x X  

In this chapter, we show low to each pointed space ( , )X x , we can 

associate a group ( , )X x , called the fundamental group of the space X  

at x . Each map : ( , ) ( , )f X x Y y  between pointed spaces 

( , ) ( , )X x and Y y then induces a homomorphism (denoted by #f  also). 

1 1: ( , ) ( , )f X x Y y    

Between groups 1 1( , ) ( , )X x and Y y   such that the following two 

conditions are satisfied: 

(i) If : ( , ) ( , ) : ( , ) ( , )f X x Y y and g Y y Z z    are two maps of 

pointed spaces, then 

1 1( ) : ( , ) ( , ).g f g f X x Z z      

(ii) If ( , ) : ( , ) ( , )X xI X x X x  is the identify map, then the induced 

gropu homomorphism 

1 1( , ) : ( , ) ( , )I X x X x X x    

Is also the identify map. 

We will also compute fundamental group of several interesting spaces 

and exhibit some of their uses. The two properties of the induced 

homomorphism stated above are known as functional properties, which 

at once yield the following important consequence: the fundamental 

group 1( , )X x is a topological invariant of the pointed space ( , )X x . 

The detailed meaning of this statement is given below: 

Proposition 2.1.1. If ( , )X x  and ( , )Y y  are two pointed spaces which are 

homeomorphism,then their fundamental groups 1 1( , ) ( , )X x and Y y   are 

isomorphic. 
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Proof: Suppose : ( , ) ( , )f X x Y y  is a homeomorphism of pointed 

spaces.  Then the inverse map 
1 : ( , ) ( , )f Y y X x   is evidently a map of 

pointed spaces and has the property that 

1 1

( , ) ( , ).,X x Y yf f I f f I    

Let us consider the induced homeomorphisms 

1

1 1 1 1: ( , ) ( , ), : ( , ) ( , )f X x Y y f Y y X x   


     

In the fundamental groups. By functional property (i), we find that 

1 1( ) ,f f f f 
   

And, by (ii),we see that ( , )I X x  is the identity map on 1( , ).X x  Thus, 

we conclude that 
1f and f 

 is the identity map on 1( , ).X x Similarly, 

we can see that 
1f and f 

 is the identity map on  Therefore, 
1f and f 

 

are inverses of each other, i.e., 1 1: ( , ) ( , )f X x Y y   is an 

isomorphism. 

The fact that the fundamental group 1( , )X x  of a pointed space ( , )X x  

of a pointed space ( , )X x  is a topological invariant is an interesting and a 

very useful result. It says that if X and  Y are two spaces such that for 

some 0 1 0, ( , )x X X x  is not isomorphic to any of 1( , ), ,Y y y Y   then 

the spaces X and Y cannot be homoeomorphic. For, suppose X and Y

are homoeomorphic and let : ( , ) ( , )f X x Y y  be a homeomorphism. 

Then 0 0: ( , ) ( , ( )f X x Y f x  is a homeomorphic of pointed spaces and 

so, by the above proposition, the induced group homomorphic 

1 0 1 0: ( , ) ( , ( ))f X x Y f x   must be an isomorphism, i.e., 1 0( , )X x  is 

isomorphic to 1 0( , ( )),y f x  a contradiction. 

One of the most important problems in topology, known as the 

classification problem in a given class of topological spaces, is to decide 

whether or not two given spaces of that class are homeomorphic. To 

prove that two spaces X and Y  are indeed homeomorphic, the problem 
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is really to find out some specific homeomorphism from X and Y , and 

invariably, the only method to do this is the knowledge of point-set 

topology. However, to prove that X and Y  are not homeomorphic, one 

looks for some topological invariant possessed by one space and not by 

the other. For example, when we have to show that 1R  is not 

homeomorphic to 
2R , we argue as follows: if we remove one point from 

both, then the remaining spaces, first being disconnected and the second 

being. 

Connected, are not homeomorphic and so  1R cannot be homeomorphic 

to 2R .Similarly, the circle  1S cannot be homeomorphic to the figure of 

eight (two circles touching at a point) because if we remove the point of 

contact from the figure of eight, then the remaining space is disconnected 

whereas if we remove any point from 1S , the remaining space remains 

connected. To prove that a closed interval  [0,1] is not homeomorphic to 

an open interval (0,1), we say that one is compact whereas the other is 

not compact and so they cannot be homeomorphic. These methods are 

known as the methods of pint set topology. Now, let us ask whether or 

not the 2-sphere 1( , )X x is homeomorphic to the 2-torus  1 1T S S   

.This can also be resolved using point-set topology as follows: take a 

circle C inT  as shown in figure. 

If we remove ,C fromT the remaining space is clearly connected. 

However, if we remove any circle from 2S , the remaining space is 

evidently disconnected. This says that T and 2S can not be 

homeomorphic. Now, let us ask whether or not the 3-sphere 3S is 

homeomorphic to the 3-torus  1 1 1.T S S S    
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The reader is invited to discover some method of point-set topology to 

show that they are not homoeomorphic (they are really not 

homoeomorphic) and see for himself that this can be extremely difficult. 

In such a case, however, the methods of algebraic topology sometimes 

work very well. We will, later on, prove that if X is a path-connected 

space then the fundamental group 
1( , )X x is independent of the base 

point (up to isomorphism),and we denote it simply by 
1( )X .This fact, 

combined with the previous proposition, will say that if X and Y are two 

path-connected spaces such that 
1( )X is not isomorphic to

1( )Y then

X and Y cannot be homoeomorphic. By popular belief based on 

experience, it is normally much easier to decide that two groups are not 

isomorphic than to decide that two given spaces are not homoeomorphic. 

Now, granting that 
3 1 1 1

1 1( ) 0 ( )S and S S S Z Z Z       (we shall 

prove these facts later), we immediately conclude that 3S cannot be 

homoeomorphic to the torus  1 1 1S S S  as their fundamental groups are 

evidently not isomorphic. This is just one of the several methods of 

algebraic topology in proving that two paces are not homoeomorphic. 

The crucial point is the result that the fundamental group  1( )X  is a 

topological invariant of path connected spaces. Several objects such as 

homology groups. Euler characteristics, etc., are other important 

invariants of topological spaces. We have only indicated that 

fundamental group 1( , )X x of a pointed space ( , )X x  is a topological 

invariant. This is a good result, but by no means the best  result. More 

general and interesting results, including the best ones about fundamental 

groups, will be studied only after we have defined them. The definition 

requires the important concept of homotopy and the generalization of 

results will require the concept of homotopy type in the class of 

topological spaces. We take up these notions in the next section. 

2.2 HOMOTOPY 
 

We now proceed to define fundamental group 1( , )X x of a given 

pointed space  ( , )X x . It will take some time to do so, but that is true of 

most of the topological invariants in algebraic topology. The 
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fundamental group is, of course, the first such invariant we are going to 

deal with. There are several important concepts which will be introduced 

on our way to the definition of  
1( , )X x .The first one is the concept of 

homotopy. We have 

Definition 2.3.1.Let ,X Y be two spaces and , :f g X Y  be two 

continuous maps. We say that  f  is homotopic to g  

( )and denoteit by writing f g  if there exists a continuous map  

:F X I Y  such that ( ,0) ( )F x f x and ( ,1) ( ) .F x g x for all x X 

The map F is called a homotopy from .f to g  

We know that for each ,t I the map : 1ti X X  defined by  

: ( ) ( , )ti x x t  is an embedding. So,  :t tf F oi X Y  is a family of 

continuous maps from ,X toY where t runs over the interval I. By the 

definition of homotopy F, tf  is the map 0 1f for t and for t  it is the 

map  .g  Thus, a homotopy F is simply a family of continuous maps from 

X and Y ,where  t urns over the interval I. By the definition of homotopy

F  is simply a family of continuous maps from X and Y  which starts 

from  f ,changes continuously with respect to  t  and terminates into the 

map  .g  In other words, f  gets continuously transformed by means of 

the homotopy F  and finally changes or deforms itself into the map .g  

See Fig. 

 

Fig. 3.2: F is  a Homotopy from 1f F i to g F i   
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Example 2.3.2. Let  nX R Y  be the Euclidean spaces and let  

, :f g X Y be defined by  ( ) ( ) 0, .f x x and g x x X    Define the 

map  :  n nH R I R  by 

( , ) (1 ) .H x t t x   

Then, clearly, H is continuous and for all  

, ( ,0) ( ( ), ( ,1) ( ). ,x X H x x f x H x g x Thus H     is a homotopy from  

f to g and so f  is homotopic to  g .  

Note that if we define 
2: 1 ( , ) (1 ) ,   n nF R R by F x t t x then F is also 

a homotopy from f to g . In other words, there can be several ways of 

deforming a map f into a given map g . 

Example 2.2.3.This is a generalization of Example 3.2.2 above. Let  X be 

any topological space andY be a convex subset of  , . .,n i e YR has the 

property that whenever  1 2, ,y y Y  the line segment joining   1 2y to y is 

completely contained in Y. Let f,g:  X Y  be any two continuous 

maps. Then  f  is homotopic to  .g To see this, let us define the map 

:H X I Y  by 

( , ) ( ) (1 ) ( ).H x t tg x t f x    

Then we see at once that H is well-defined, continuous, it starts with  f  

and terminates into .g A homotopy of this kind is called a straight-line 

homotopy. 

Example 2.2.4. Let   1 : 1S z C z    be the unit circle. We know that 

we can also write  1 : 0 2 .iS e       Define two maps  

1 1 1, : ( ) ( ) , .f g S S by f z z and g z z z S Then f     is homotopic to g  

and the map  1 1:F S I S   defined by 

( )( , )t i tF e t e     

is a homotopy from .f to g  Note that  F  is continuous because it is the 

composition of maps 
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1 1 1 1

( )( , ) ( , ) ,i i it i t

S I S S S

e t e e e    

   

 
 

Where the second map is multiplication of complex numbers. Note that 

in this example, the family of maps   1 1:tf S S  is just the family of 

rotations by the angle ,0 1.t t    

The next result implies that the set of all maps from a space X to a space

Y  can be decomposed into disjoint equivalence classes. 

Theorem 2.2.5.Let  ,X Y  be fixed topological spaces and  ( , )C X Y  

denote the set of all continuous maps from .X toY  Then the relation of 

―being homotopic to‖ is an equivalence relation in the set ( , )C X Y . 

Proof. Note that each continuous map  :f X Y  is homotopic to itself 

because  :H X I Y   defined by  ( , ) ( )H x t f x is a homotopy from 

f  to itself. Next, suppose  : .H f g Then the map  :iH X I Y   

defined by ( , ) ( , (1 ))iH x t H x t   

is a homotopy from ;g to f to see this, note that  

( ,0) ( ,1) ( )iH x H x g x   and  
'( ,1) ( ,0) ( ) .H x H x f x for all x X  

Moreover,  'H is continuous because 'H  is simply the composite of 

continuous maps. 

,X I X I Y     

Where the first map is the map  ( , ) ( ,1 )x t x t and the second H. The 

first map itself is continuous because its composite with the two 

projection maps, viz.,  ( , ) ( , ) (1 )x t x and x t t    is continuous. Thus, 

the relation is symmetric. Finally, suppose 1 2: : .H f g and H g h 

Define a map :H X I Y by   

1

2

( , 2 ), 0 1/ 2,
( , )

( , 2 1),1/ 2 1.

H x t t
H x t

H x t t
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Then H is continuous by the continuity lemma and  

( ,0) ( ,1) , : ,H x f and H x h Hence H f h   proving the relation to be 

transitive. 

The relation of homotopy in the set ( , )C X Y  of all continuous maps, 

therefore, decomposes this set into mutually disjoint equivalent classes. 

The equivalence classes are called the homotopy classes of maps from  

X toY and the set of all homotopy classes is denoted by [ , ].X Y We will 

need the following result very often. 

Theorem 2.2.6.   Let 1 1, :f g X Y  be homeopathic and 2 2, :f g X Z

be also homotopic. Then the composite maps 2 1 2 1, :f f g g X Z  are 

homeopathic too, i.e., composites of homotopic maps are homotopic. 

Proof: Let 1 1 1 2 2 2, : .H f g and H f g   Then, clearly, 

2 1 :f H X I Z  is homotopy from   2 1 2 1.f f to f g Next, define a 

map  :H X I Z  by  2 1( , ) ( ( ), ), . .,H x t H g x t i e the map  H  is simply 

the following composite: 

2H
X I Y I Z     

1 2 1( , ) ( ( ), ) ( ( ), )x t g x t H g x t   

Then H is continuous and     

2 1 2 1 2 1 2 1 2 1 2 1( ,0 ( ( ),0) ( ( )), ( ,1) ( ( ),1) ( ( )), . ., : ,H x O H g x f g x H x H g x g g x i e H f g g g    

 

Now, because 2 1 2 1f g and f g  is homotopic to 2 1,g g it follows by the 

transitive property of homotopy relation that 2 1f f is homotopic to

2 1.g g  

Exercise: 

1. Let X be a topological space and 2Y  S  be the open upper 

hemisphere. Prove that any two maps , :f g X Y  are homotopic. 
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2. Let   P p be a point space and X be a topological space. Show 

that X  is path connected if and only if the set [ , ]P X of homotopy classes 

of maps is a singleton. 

3. Let X  be a discrete space. Show that if a map :f X X  is 

homotopic to the identity map : ,XI X X  then .Xf I  (Hint: The 

given condition implies that there is a path joining x and ( ).)f x  

4. Suppose X  is a connected space and Y  is a discrete space. Prove 

that the two maps , :f g X Y   are homotopic if and only if .f g  

5. Let 1S be the unit circle of the complex plane and 
1 2, :f g S S be 

two maps defined by ( )f z z and 
2( ) .g z z  What is wrong in saying 

that the map 1 1: 1F  S S defined by 
1( , ) tF z t z   is a homotopy from 

?f to g  

6. Let X  be a locally compact Hausdorff space and the set ( , )C X Y of 

all continuous maps from X toY be given the compact open topology. 

Prove that two maps , ( , )f g C X Y  are homotopic if and only if and 

only if these can be joined by a path in the space ( , )C X Y .  

(Hint: Use the exponential correspondence theorem.  

2.3 CONTRACTIBLE SPACES AND 

HOMOTOPY TYPE 
  

The notion of a contractible space is very important and the definition 

itself has some geometric appeal, as we shall see later. Recall that a map 

:f X Y is said to be a constant map provided each point of X  is 

mapped by f to some fixed point .Y If this is the case, then it is 

convenient to denote such a constant map by the symbol 

0. ., ( ) , .yo yoC i e C x y for every x X   We have 

Definition 2.3.1. A topological space X  is said to be a contractible space 

if the identity map  :Ix X X  is homotopic to some constant map  

: ,xC X X where, of course,  x X . 
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There are numerous examples of contractible spaces. For instance, we 

note that any convex subset of an Euclidean space nR  is contractible. 

For, let S be a convex subset of nR . This  means for any two points  

, ,x y S the point  (1 ) ,0 .tx t y is also in S for all t t t    Now let 

0 .x S Define a map  :H S I S by   

: ( , ) (1 ) oH x t t x tx    

Then it is clear that  H is a homotopy from the identity map on  S  to the 

constant map  : .xoC S S Hence,  H is a contraction and so S is 

contractible. In particular, the Euclidean space nR ,the disk  nD are 

contractible spaces. More generally, a subspace  X of nR  is said to be 

star-shaped if there exists a point 0x X such that the line segment 

joining any point of X to 0x lies completely in X .For example, the subset 

2X  2R (Fig.2.3) is star-shaped. 

 

Fig.2.3: A star –shaped region 

Then one can easily see that X is contractible to the point  0x and the 

same contraction, as defined above, works in this case also. Now, we ask 

the following question: Determine whether or not the n-sphere nS ,  1n 

is contractible ? It is obviously not star-shaped. That does not mean, 

however, that X is not contractible (see Example 2.3.10). The answer to 

this question is ―No‖; it will take quite sometime before we can prove it. 

The following concept is again extremely basic. 

Definition 2.4.2. Let  :f X Y be a continuous map. We say that  f is a 

homotopy equivalence if there exists a continuous map  :g Y X such 

that g f is homotopic to the identity map  XI on X and f g is 



Notes 

37 

homotopic to the identity map  .YI onY Two spaces  X and Y are said to 

be homotopically equivalent or of the same homotopy type of there 

exists a homotopy equivalence from one to the other. 

We must observe that two homeomorphic spaces are of the same 

homotopy type. For, suppose X and Y are homeomorphic and let  

:f X Y  be a homeomorphism. Then the inverse map  
1 :f Y X  is 

continuous and satisfies the condition that  
1 1

.X Yf f I and f f I  

This means  f  is homotopy equivalence, i.e., X and Y are of the same 

homotopy type. The converse is not true. We have 

Example 2.4.3. Consider the unit disk nD (open or closed) and a point  be 

the inclusion map and  be the constant map. Then evidently .oX oi IPC  On 

the other hand, the map and
2:xoC PD be the constant map. Then 

evidently  .xo PC oi I  On the other hand, the map  2 2:H I 2 2D D

defined by 

( , ) (1 ) oH x t t x tx    

Is a homotopy from  
2

0.xI to i CD  Thus,  2D is of the same homotopy 

type as appoint space   P and these are clearly not homoeomorphic. 

One can easily verify that the relation of ―homotopy equivalence‖ in the 

class of all topological spaces is an equivalence relation. Also, in view of 

the above example, the relation of homotopy equivalence is strictly 

weaker than the relation of ―homeomorphism‖. It is also clear from the 

above example that if a space  X is compact then a space  ,Y which is 

homotopically equivalent to  ,X need not be compact, i.e., the 

compactness is not a homotopy invariant. Similarly, the topological 

dimension is not a homotopy invariant. Similarly, the topological 

dimension is not a homotopy invariant because dimension of the plane  

2R is 2 whereas a point has dimension zero. These and several other 

examples show that topological invaraiants are, in general, not 

―homotopy‖ invariants and so the homotopy classification of spaces is 

quite a weak classification .However, it is still very important because 
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we will later define some homotopy invariants which would be evidently 

topological invariants. These invariants would also be computed for a 

large class of topological spaces. The moment we notice that if any of 

these invariants is not the ―same‖ for any two given spaces  ,X and Y we 

can immediately assert that ,X and Y  are not of established strategy of 

algebraic topology for proving that two given spaces are not 

homoeomorphic. Example 3.4 is a trivial case of the following. 

Theorem 2.4.4. A topological space X  is contractible if and only if X is 

of the same homotopy type as a point space   .P p  

Proof. Suppose X is contractible. Let  :H X I X  be a homotopy 

from the identify map  XI to the constant map : .
ox

C X X Define maps 

: : ( ) ( ) , .oi P X and C X Pby i p x and C x p x X     Then, clearly,  

.Pc i I Also, the map 

H is a homotopy from  XJ toi C  because  ( ,0)H x x  and 

( ,1) ( ) ( )
ox oH x C x x i C x    

For each .x X Hence X and P are of the same homotopy type. 

Conversely, suppose there are maps  : :f X P and g P X   such that  

.X Pg f I and f g I  ( ) :oLet g p x and H X I X   be a homotopy 

from  .XI to g f Then because  

( ) ( ( )) ( ) , .og f x g f x g p x for all x X    g f is the constant map  

: .xoC X X Thus,  XI is homotopic to the constant map  xoC and so the 

space xoC  is contractible. 

Thus, the contractible spaces are precisely those spaces which are 

homotopically equivalent to a point space. The intuitive picture of a 

contractible space. The intuitive picture of a contractible space X is quite 

interesting. A  homotopy H which starts from the identity map on X and 

terminates into a constant map  , ,xo oC x X should be thought of as a 

continuous deformation of the space  X which finally shrinks the whole 
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space X into the point  0.x In other words, if we imagine the  unit interval  

I as a time interval then at the time t=0, every point  x X is at its 

original place: as  t -varies from 0 to 1 continuously,  x moves 

continuously and approaches the point   0 ;x even  0x moves accordingly 

and comes back to itself. Furthermore, all do not change abruptly. Thus, 

if we follow the movement of an arbitrary point  ,x X we note that it 

describes a path in X starting from  x which terminates at  0.x In 

particular, we intuitively see that X is path connected. We make this 

statement precise: 

 

Fig. 2.3: Contractible space is path connected 

Proposition 2.4.5.If X  is a contractible space, then X is path connected. 

Proof. Suppose  is contractible to a point  0 :x and H X I X   is a 

homotopy from  .X xoI toC  Let  .a X  It suffices to show that a can be 

joined to ox  by a path in X .Note that  H  maps whole of bottom to itself 

whereas the entire top to the point  0.x Define a map  

: ( ) ( , )f I X I by f t a t   and note that it is continuous. Then  

(0) ( (0)) ( ,0) ,G f H a a     

And 

0(1) ( (1)) ( ,1) .H f H a x     

Now suppose X is contractible. This means X can be contracted to some 

point x X . Can we then contract X to an arbitrary point  0 ?x X The 

answer to this question is ―yes‖. We will now explain this. Let us prove 
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Propositon 2.4.6. A topological space X  is contractible if and only if an 

arbitrary map :f T X  from any space T to X  is homotiopic to a 

constant map. 

Proof :Suppose  X is contractible. This means the identity map  

:XI X X  is homotopic to some constant map. Say  : .xoC X X  

Now let  :f T X  be any map. By theorem 2.2.6, we find that  XI f

is homotopic to  .xoC f But  :X xoI f f and C f T X   is the 

constant map. 

For the converse, take  T X and the map  :f T X  to be the identity 

map. Then, by the given condition, we find that  :XI X X  is 

homotopic to a constant map, i.e., X  is contractible. 

It now follows from above that if X  is a contractible space, then any 

map   :f X X is homotopic to a constant map  :xoC X X  In 

particular, for any  ,x X the constant map  xC and the identify map  

:XI X X  both are homotopic to  , . .,zo xC di e C  is homotopic to  xI for 

all  .x X  

Corollary 2.4.7. If X is a contractible space, then the identity map 

:XI X X  is homotopic to a constant map :xC X X for all .x X In 

particular, X can be contracted to any arbitrary point of X . 

Once again, let X  be a contractible space. We ask now a slightly 

stronger question. Can we contract X  to some point  0 .x X so that the 

point  0x  does not move at all ? The answer to the question is ―No‖. We 

will give an example of the later on (See Exampl3 2.3.10). This question 

leads to the concept of relative homotopy which is stronger than the 

homotopy defined earlier 

Definition 2.4.8.Let  A X be an arbitrary subset and  , :f g X Y be 

two continuous maps. We will say that  f is homotopic to  g ‖relative to 

A‖ if there exists a continuous map  :F X I Y   such that 

( ,0) ( ), ( ,1) ( ), ,F x f x F x g x for all x X and    
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( , ) ( ) ( ), .F a t f a g a for all a A    

Note that if we take A to be null set   ,then the concept of relative 

homotopy reduces to that of homotopy. It is also to be noted that if  

, :f g X Y are to be homotopic relative to some subset  

,Aof X then f and g must agree on  A to start with. The map  f will 

change into the map  g  by a family continuous maps  : , ,th X Y t I 

but the points of  A will remain unchanged under  th when  t varies from 

0 to 1. 

If ( , )C X Y is a fixed subset and A denotes the set of all continuous maps 

: ,f X Y then following the proof of Theorem 2.2.5, one can prove 

that the relation of being ―relativity homotopic to‖ with respect to A  is 

an equivalence relation in the set F . 

 

Fig. 2.5: Strongly contractible to a point A a relative to the subset X , 

i.e., a  can be contracted to the point a  in point a , but the point a itself 

does not undego any change. In other words, we terminates into the 

constant map aC  relative to the subset a . This means, (see Fig. 2.5) 

under the continuous map F , the line X is mapped to the point a X . If 

we take any neighbourhood U of a , the continuity of F will give for 

each ,t I neighborhoods ( )tV a  of a  in X and ( )W t of t  in I such that 

( ( ) ( )) .tF V a W t U   The compactness of I  means that the open 

covering  ( ) :W t t I  of I will have a finite sub cover, say, 

1( ),..., ( ),nW t W t such that ( ( ) ( )) ,
it iF V a W t U  for all 1,..., .i n

Therefore, 1( ) ( )
i

n

i tV a V a is a neighbourhood of a in X such that 

( ( ) )F V a I in U , we find that b can be joined to a by a path which lies 

in U . This completes the proof of the following: 
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Theorem 2.4.9.If a space X is contractible to a point a X  relative to the 

subset a , then for each neighbourhood U of a  in X , there exists a 

neighbourhood V of a contained in U such that any point of V can be 

joined to a by a path lying completely inside U , i.e. X is semi-locally 

path connected. 

Let us now consider the famous 

Example 2.4.10. (Comb Space).We consider the following subset C 

(Fig.2.6) of the plane (shown only partly). 

 

It consists of the horizontal line segment joining (0.0) to (1,0) and 

vertical unit closed line segments standing on points (1/n,0) for each 

n=1,2,….together with the line segment joining (0,0) with (0,1). 

The comb space C is contractible. The projection map  : ,p C L  where  

L  is the line segment joining (0,0) with (1,0), is a homotopy 

equivalence. For, if i:  L C is the inclusion map, then  Lp i I and 

the map  : 1F C C   defined by (( , ), ) ( , (1 )) ).F x y t x t y   

Is a homotopy between  .CI and i p  We already know that  L  is 

homeomorphic to the unit interval which is of the same homotopy type 

as a point space and so by Theorem 2.4.1, C is contractible. 

C is not contractible relative to ( ,1)o .Note that any small 

neighbourhood V of (0,1) has infinite number of path components. So, if 

we take the neighbour hoodU D C  of (0,1)in C, where D is the open 

disk around (0,1) of radius 1./2, then  U cannot have any neighbourhood  

V  each of whose points can be joined to (0,1) by a path lying in U . This 
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observation combined with Theorem 2.3.9, shows that  C is not 

contractible relative to  ( ,1)o . 

Remark 2.4.11. Note that if  , :f g X Y  are two continuous maps 

which are homotopic relative to some subset  ,Aof X then obviously  f  

is homotopic to  g . The converse, however, is not true, i.e., there are 

maps , :f g X Y  which are homotopic, and even agree on a subset

,Aof X yet they need not be homotopic relative to A .For example, 

consider the identify map  :XI X X of the comb space  X C and the 

constant map  (0,1) :C X X Then, obviously,  XI and  (0,1)C are not 

homotopic relative to (0,1). This means the concept of relative homotopy 

is definitely stronger than that of homotopy. 

There are some fundamental concepts related to ―contractible‖ spaces. It 

is appropriate to discuss them no. 

Definition 2.4.12. Let .A X We say that  A  is a retract of  X  if there 

exists a continuous map  :r X A  such that  ( ) , .r a a for all a A  The 

map  r is called the retraction map. 

If  :i A X is the inclusion map, then the condition  ( ) ,r a a for all  

a A  is equivalent to saying that  .Ar i I Thus, A is a retract of  X if 

and only if the inclusion map I has left inverse. As an example, note that 

every single point   0x X of an arbitrary topological space (0,1) is a 

retract of X and the constant map 
oxC is the retraction map. Let X 

[0,1], the unit interval and 0,1A  , the boundary of X . Then A cannot 

be a retract of X because X is connected whereas A is disconnected. Let 

us ask a general question: Let X be the retract of X . The answer is again 

―No‖ and this fact is known as 'Brouwer s  No Retraction theorem. The 

proof, however, will be given later on. 

Defination 2.4.12.A topological space X is said to be deformable into a 

subspace A X  if there is a map :f X A which is right homotopy 

inverse of the inclusion map : , . .,i A X i e the identity map XI is 

homotopic X . 
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The above definition asserts that there is a homotopy, say, 

:D X I X  such that ( ,0) , ( ,1) ( ( )) ( ).D x x D x i f x f x    

Any such homotopy D is called a deformation of X into A and we say 

that X is deformable into .A  It must be observed that the homotopy D

,which starts with identity map : ,XI X X simply moves each point of 

X continuously, including the points of A and finally pushes every point 

of X into a point of A . In particular, if a space X  is deformable into a 

point a X , then X is contractible and vice versa. If we can find a 

deformation D  which deforms X into A but the points of A do not move 

at all, then the homotopy D will be ―relative to A ‖ and we say that X is 

strongly deformable into A . In such a case, note that for each 

, ( ,1) ( )a A D a f a a   and so the map :f X A is automatically a 

retraction of X onto A . We have 

Definition 2.4.14. A space X  is said to be strongly deformable into a 

subspace A  if there is a continuous map :f X A  which is the right 

homotopy inverse of the inclusion map :i A X  relative to A , i.e., the 

identity map :XI X X is homotopic to :i of X X  relative to A . 

Clearly, if X is strongly deformable into a subspace A , then it is also 

deformable into A . But the converse is not true even if the map 

:f X A  is onto: the comb space C (Example 2.3.10) is deformable 

into the point (0,1)  because it is contractible and so the identity map 

XI  is homotopic to the map ( ,1)oi C where (0,1)C  is the constant map 

.X X  However, we have already seen that XI  is not homotopic to 

( ,1)oi C relative to the point (0,1) . Finally, we have 

Definition 2.4.15 A  subspace a of a topological space X is said to be a 

deformation retract of  X of X is deformable into  A  so that the final map 

is a retraction of  X and A . 

Definition 2.4.16 A subspace A of a topological space X  is said to be a 

strong deformation retract of X if X  is deformable into A strongly( A  is 

then automatically a retract of X ). 
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It follows from the above definitions that if A is a deformation retract of  

X , then the inclusion map  :i A X  has a two-side homotopy inverse, 

i.e., it is a homotopy equivalence, and consequently   Aand X are of the 

same homotopy type . On the other hand, if A is a strong deformation 

retract of X ,then A is homotopic ally equivalence, and consequently 

Aand X are of the same homotopy type. On the other hand, if A is a 

strong deformation retract of X ,then A is homotopically equivalent to X

and something more is true, viz., X can be deformed into A without 

moving the points of A  at all. For instance, the point (0,1) of the comb 

space  X is a deformation retract of  X but is not a strong deformation 

retract of X . Quite often we will use the following. 

Example 2.4.17.For   11, ( ,...,0)n nn o X   S R is a strong 

deformation retract of X .fig. 2.7 depicts the case n=1. 

 

Each infinite line segment L  starting from its origin intersects then circle  

1S at exactly one point, say, L .Since origin is not a point of  

 2 (0,0) ,R these lines are disjoint and their union is  2 (0,0) .R  We 

define a map   2 1: (0,0)r S r R  by  : ( ) 1r x r for all points  .x L

Then, clearly  r is continuous and  1S becomes a retract of   2 (0,0) .R

Let us define a deformation     2 2: ( (0,0) (0,0)D I   R R by 

Contractible Spaces and Homotopy Type 

( , ) (1 ) .
x

D x t t x t
x

    

Then D is clearly a strong deformation retraction of  2 (0,0)R rrelative 

to
1 1int .oS S rA similar argument shows that nS ris a strong deformation 

retract of   
1

(0,0) .
n

R  
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Exercise: 

1. Let A X  be a retract of  X where X is Hausdorff. Then prove 

that  A must be closed in X . (This implies that an open interval (0,1) can 

never be a retract of any closed subset of the real line.) 

2. Let X be a connected space and 0, 1x x X  be two points of  X

which have disjoint open neighbourhoods in X .Show that  0 1,A x x  

can never be a retract of X . 

3. Prove that a space X is contractile if and only if every map  

:f X T to any space  T  is null-homotopic. 

4. Show that of  A is a strong deformation retract of X and B  is a 

strong deformation retract of A , then B is a strong deformation retract of 

X  

5. Prove that an arbitary product of contractible space is again 

contractible. 

6. Prove that a retractof a contractible space is contractible. 

7. For any space X consider the cylinder X I  over X and collapse 

the top X I of this cylinder to a point. The resulting quotient space, 

called cone over X , is denoted by ( )C X . Prove that ( )C X  is contractile 

for any space X . 

8. Let    2 0,1 0,1I   be the unit square and 2C I  be the cob space 

(Example 2.3.10). Prove that  C  is not a retract of 2I . (Hint: Given any 

open neighbourhood 
1 1

((0, ), )
2 4

U B C   ,there exist a connected 

neighbourhood V U of 
1

(0, )
2

in I I  such  that ( )r V U ,but ( )r V  is 

disconnected.) 

9. Determine which of the following spaces are contractible: 

(i) Unit interval I=[0.1]. 

(ii)  2 2,p whereS S is a 2-sphere and p  is any point of 2S . 

(iii) Any solid or hollow cone in 3R  

(iv) The subspace    0 1/ :n N  of real line. 
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10. Consider the following subspace X  of plane 
2 , XR  consist of all 

closed line segments joining origin with points 
1

1, , 1n
n

 
 

 
 and the line 

 ( ,0) 0 1 .x x  Prove that X  is contractile, but none of the points 

( ,0), 0,x x  , is a strong deformation retractof X . 

11. Let I be the unit interval and X  be any path connected space. 

Prove that the sets [I,X]and [X,I] each has only one element. (Hint: The 

space I is contractible) 

12. Give an example of a space X  which is of the same homotopy type 

as a discrete space  0,1,2,3 ,D  , but is not homeomorphic to D . 

13. Prove that a homotopy invariant is also topological invariant. Give 

an example to show that a topological invariant need not be a homotopy 

invariant. (Hint: There are contractible spaces which are not compact, not 

locally compact, not locally connected etc.) 

Check Your progress  

1. Prove: Theorem: Let    be fixed topological spaces and    denote the set 

of all continuous maps from   Then the relation of ―being homotopic to‖ 

is an equivalence relation in the set  . 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

2. Prove: Theorem: Let   be homeopathic and  be also homotopic. Then 

the composite maps  are homeopathic too, i.e., composites of homotopic 

maps are homotopic. 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

3. Prove: A topological space  is contractible if and only if  is of the same 

homotopy type as a point space    
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__________________________________________________________

__________________________________________________________

__________________________________________________________ 

2.4 LET US SUM UP 
 

Let X  be a topological space. Often we associate with  X an object that 

depends on X as well as on a point  x  of  X . The point x   is called a 

base point and the pair  ( , )X x  is called pointed space. 

Each pointed space  ( , )X x , we can associate a group ( , )X x , called the 

fundamental group of the space X  at x . 

Let ,X Y be two spaces and , :f g X Y  be two continuous maps. We 

say that  f  is homotopic to g  ( )and denoteit by writing f g  if there 

exists a continuous map  :F X I Y  such that ( ,0) ( )F x f x and 

( ,1) ( ) .F x g x for all x X  The map F is called a homotopy from .f to g  

Let  ,X Y  be fixed topological spaces and  ( , )C X Y  denote the set of all 

continuous maps from .X toY  Then the relation of ―being homotopic to‖ 

is an equivalence relation in the set ( , )C X Y . 

Let 1 1, :f g X Y  be homeopathic and 2 2, :f g X Z be also 

homotopic. Then the composite maps 2 1 2 1, :f f g g X Z  are 

homeopathic too, i.e., composites of homotopic maps are homotopic. 

A topological space X  is contractible if and only if X is of the same 

homotopy type as a point space   .P p  

2.5 KEY WORDS 
 

Topological space 

Fundamental group 

Isomorphism 
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Homeomorphic 

Homotopy 

homotopy equivalence 

2.6 QUESTIONS FOR REVIEW 
 

1. Explain about Homotopy 

2. Explain about contractible spaces and homotopy 

3. Determine which of the following spaces are contractible: 

(i) Unit interval I=[0.1]. 

(ii)  2 2,p whereS S is a 2-sphere and p  is any point of 2S . 

(iii) Any solid or hollow cone in 3R  

(iv) The subspace    0 1/ :n N  of real line. 

2.7 SUGGESTIVE READINGS AND 

REFERENCES 
 

1. Algebraic Topology – Satya Deo 

2. Lectures notes in Algebraic Topology- James F. Davis Paul Kirk 

3. Introduction to Algebraic Topology and Algebraic Geometry- U. 

Bruzzo 

4. Notes on the course : Algebraic Topology- Boris Botvinnik 

 5. R. Bott & L. Tu, Differential Forms in Algebraic Topology, Springer-

Verlag, New York 1982. 

 6.  B. Gray, Homotpy theory, Academic Press, New York 1975. 

7. M.J. Greenberg,Lectures on Algebraic Topology, Benjamin, New 

York 1967. 

8.  P.A.Griffiths & J.Harris, Principles of Algebraic Geometry. Wiley, 

New York 1994. 

9.  R. Harshorne, Algebraic geometry, Springer-Verlag,newYork1977. 

10. P.J.Hilton & U&.Stammbach,A Course in Homological Algebra, 

Springer-Verlag, NewYork 1971. 

11. F.hirzebruch, Topological Methods in Algebraic Geometry, Springer-

Verlag,Berlin 1966. 
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 12.  S.Kobayashi,differential Geometry of Complex Vector Bundles, 

Princeton University Press, Princeton 1987. 

13.  W.S.massey,Exact couples in algebraic topology, I,II 

14. E.H.Spanier,Algebraic topology, Corrected repreint, Springer-Verlag, 

New York-Berlin 1981. 

2.8 ANSWERS TO CHECK YOUR 

PROGRESS QUESTIONS 
 

1. See section 2.2.5 

2. See section 2.2.6 

3. See section 2.4.4 
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UNIT-3 PROPERTIES OF 

FUNDAMENTAL GROUP 
 

STRUCTURE 

3.0 Objective 

3.1 Introduction 

3.2 Product of two paths in topological spaces 

3.3 Properties of fundamental group 

3.4 Let us sum up 

3.5 Key words 

3.6 Questions for review 

3.7 Suggestive readings and references 

3.8 Answers to check your progress 

3.0 OBJECTIVE 
 

In this unit we will learn about and understand about product of paths in 

topological spaces, properties of fundamental group, important 

definitions, theorems and propositions. 

3.1 INTRODUCTION 

 

In the mathematical field of algebraic topology, the fundamental 

group of a topological space is the group of the equivalence 

classes under homotopy of the loops contained in the space. It records 

information about the basic shape, or holes, of the topological space. The 

fundamental group is the first and simplest homotopy group. The 

fundamental group is a homotopy invariant—topological spaces that 
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are homotopy equivalent (or the stronger case of homeomorphic) 

have isomorphic fundamental groups. 

The abelianization of the fundamental group can be identified with the 

first homology group of the space. When the topological space is 

homeomorphic to a simplicial complex, its fundamental group can be 

described explicitly in terms of generators and relations. 

3.2 PRODUCT OF TWO PATHS IN 

TOPOLOGICAL SPACES 
 

Recall that a  path in a topological space X  is just a continuous map 

: [0,1] ; (0)I X     is called the Initial point and (1)  is called the 

terminal point of the path , ,If   are two paths in X such that 

(1) (0),   then we can define a new path (Fig.2.8), called the product 

of and   denoted by   , as follows: 

(2 ) 0 1/ 2
( )( )

(2 1) 1/ 2 1

t t
t

t t


 



  
   

   
                                             (3.1) 

Note that :1 X    is continuous by the continuity lemma, the initial 

point of    is the initial point of   and the terminal point of    is 

the terminal point of  . 

  

Fig.: Product of two paths 

One can verify that if , ,    are three paths in X  such that 

(1) (0), (1) (0),     then ( )    and ( )     are paths in X  

which are not necessarily the same paths. To see this, just apply 

definition (3.4.1) and look at the image of the point t=1/2 under both the 
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paths. Therefore, the product of paths is not an associative  operation. Let 

us now fix a point 0x X  and consider the set of all closed paths at 0 ,x  

i.e., those paths whose initial and terminal points are 0 ;x  such a path is 

also known as loop in X  based at 0.x It is clear that the product of two 

loops based at 0x  is always defined. The difficulty that the product of 

loops based at 0x  need not be associative is still there. To surmount this 

difficulty and to finally get a group structure, we will introduce an 

equivalence relation in the set of all loops in X  based at 0x X  . First, 

we have an important as well as general 

Definition 3.4.1. Let ,   be two paths in X  with the same initial and 

terminal points, i.e., 0 1(0) (0) , (1) (1) .x x       We will say that 

  is equivalent to  , and write it as 
0 1( , ) , x xR  if there exists a 

homotopy between and   relative to the subset  0,1 .of I  of I. In 

other words, the homotopy keeps the end points fixed. 

Thus, the path   is equivalent to   if there exists a continuous map 

:H I I X   such that 

( ,0) ( ), ( ,1) ( )H s s H s s    

(0, ) (0) (0), (1, ) (1) (1)H t H t        

For all s I  and for all .t I  In other words, the path   changes 

continuously and finally it becomes the path  , but during all this 

transformation the end points remain fixed (Fig. 3.9). 

 

Fig. 3.9: H  is a path-homotopy 
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The relative homotopy H , which keeps the end points fixed, is 

sometimes called path homotopy, just for convenience. The next result, 

which is in fact, true, more generally, or homotopy relative to any subset 

A  of the domain space (of. Definition 2.3.8), show that the above 

relation is an equivalence relation. 

Therorem 3.4.2. Let 0 1, .x x X Then the relation of ―being equivalent‖ in 

the set of all paths starting from 0x  and terminating at 1x  is an 

equivalence relation. 

Proof. Let : I X   be any path with 0 1(0) , (1) .x x   Then the map 

:H I I X   defined by : ( , ) ( )H s t s  is a homotopy from   to 

itself relative to  0,1) . Thus, the relation is reflexive. Next, suppose 

,   are two paths from 0 1 :x to x andH I I X   is a continuous map 

such that  

( ,0) ( ), ( ,1) ( ), sH s s H s s I      

0 1(0, ) , (1, ) ,H t x H t x t I     

Define a map 
' :H I I X by   

'( , ) ( , ).H s t H s I t   

Then 'H  is continuous and has the property that 

'( ,0) ( ,1) ( ),H s H s s s I    

0 1'(0, ) '(1, ) ,H t x H t x t I    . 

Thus,   relative to  0,1 implies  relative to  0,1  i.e., the relation is 

symmetric. To prove the transitivity of the relation, suppose X  relative 

to  0,1 , X  relative to  0,1 . Let 1H and 2H  be two homotopies such that 

1 1( ,0) ( ), ( ,1) ( ),H s a s H s s s I     

1 1 1(0, ) (1, ) ,oH t x H t x t I     
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And 

2 2( ,0) ( ), ( ,1) ( ),H s s H s s s I      

2 2 1(0, ) , (1. ) , .oH t x H t x t I     

Define a map :H I I X  by 

1

2

( , 2 )
( , )

( , 2 1)

H s t
H s t

H s t


 



0 1/ 2

1/ 2 1

t

t

 

 
 

Then H is continuous by the continuity lemma and is indeed a homotopy 

relative to  0,1  from  to . This completes the proof of the theorem. 

When 0 1,x x  we conclude the following result. 

Corollary 3.4.3.The relation ―being equivalent‘ in the set of all loops in 

X  based at 0x X  is an equivalence relation. 

Next, we are go into to deal with only loops in X  based at given point 

0x X . If  ,   are two loops based at X  which are equivalent, then we 

will write this as 
0
xR  .Also, the equivalence, class of a loop   based at 

0x  will be denoted by the symbol    and called the homotopy class of 

the loop . It must be emphasized at this point that if   is treated as a 

map : I X   with (0) (1)   , then the homotopy class of the map 

 , according to Theorem 3.2.5 is different from the path homotopy class 

of loop   specified by Theorem 3.4.2. In fact, the former homotopy 

class is, in general ,larger than the latte path, homotopy class. Let 

1 0( , )X x  denote the set of all homotopy classes of loops in X  based at 

0x , i.e., 

  1 0 0( , ) :X x isaloop X based at x   

The next proposition implies that the product of loops induces a product 

in the set   of al homotopy classes of loops based at 0x . Recall that if 
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,a   are two loops at 0x ,then their product    is also a loop at 

0 .x X  

Proposition 3.4.4. Suppose 
' ', , .     are loops in X  based at 

0 0

' ' '

0, 3    
ox x x xo

If R R R x then R R  

Proof. Let 1X  be a homotopy from 2', H  be a homotopy from 
'to   

i.e., 1 2,H H  are maps from I I X    

3.3 FUNDAMENTAL GROUP AND ITS 

PROPERTIES 
 

'

1 1( , ) ( ), ( ,1) ( ), sH s o s H s s I      

2 0 1( , ) (1, ),H o t x H t t I     

and 

'

2 2( ,0) ( ), ( ,1) ( ),H s s H s s s I      

2 0 2(0, ) (1, ), .H t x H t t I     

Define a map :H I I X by   

1

2

(2 , ) 0 1/ 2
( , )

(2 1, ) 1/ 2 1

H s t s
H s t

H s t s

 
 

  
 

Then H is continuous by continuity lemma, and 

1

2

(2 , ) 0 1/ 2
( ,0)

(2 1,0) 1/ 2 1

H s o s
H s

H s s

 
 

  
 

      
(2 ) 0 1/ 2

(2 1) 1/ 2 1

s s

s s





 
 

  
 

                                                          ( )( ).s    
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By a similar calculation, 

0

' ' ' '

0( ,1) ( )( ) (0, ) (1, ), 1. .xH s s and H t x H t t Thus              

One can easily observe that the above proof yields the following general 

result, viz., 

Corollary 3.4.5. Let '  be two path homotopic paths joining 0x  with 1x  

and 
',   be two path homotopic paths joining 2 2.x to x Then   is 

path-homotopic to    joining 0 0x tox  and the path homotopy can be 

chosen so that the point 1x  remains fired. 

Sometimes we will need to consider the path homotopy classes of paths 

joining 0 1.x to x  If  is a path joining  0 1x with x then  [ ] will also be used 

to denote the path homotopy class represented by . The set of all path 

homotopy classes of paths joining 0 1.x to x  will be denoted by 

1 0 1( , ).X x x  In this terminology, we can define an operation 

1 0 1 1 1 2 1 0 2: ( , ) ( , , ) ( , , )X x x r x x x X x x    

By 

[ ] [ ] [ ]      

The above corollary says that the map  is well defined. In case 0 1 2, ,x x x  

are the same points, the map  defines a binary operation in the set 

1 0( , )X x  of all homotopy classes of loops based at 0.x Consequently, we 

can state the next 

Definition 3.4.6. Let [ ],[ ]   be any two elements of 1 0( , ).X x Then we 

define their product [ ] [ ]   

[ ] [ ] [ ].      

The following basic result can now be proved. 
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Theorem 3.4.7. The set 1 0( , )X x  of all path homotopy classes of loops 

based at 0x  is a group with respect to the binary operation " " define 

above. 

Proof. We must prove that the operation  is associative, there exists 

identity element in 1 0( , )X x  and each element of 1 0( , )X x  has an 

inverse in 1 0( , )X x . The proof of each of these statements is achieved 

by constructing a suitable path homotopy relative to {0,1}  between 

appropriate paths and we discuss them below one by one: 

The operation is associative: Let [ ],[ ],[ ]    be three elements of 

1 0( , ).X x Since 

([ ] [ ] [ ] [( ) ]         

And 

([ ] [ ] [ ] [ ( )],         

It is sufficient to show that 
0

( ) ( ).        xR By definition 

(4 ) 0 1/ 4

(( ) ( ) (4 1) 1/ 4 1/ 2

(2 1) 1/ 2 1

s s

s s s

s s



   



 


     
   

 

And 

(2 ) 0 1/ 2

( ( ))( ) (4 2) 1/ 4 3/ 4

(4 3) 3/ 4 1.

s s

s s s

s s



   



 


     
   

 

Thus we should define a homotopy :H I I X   such that  

0

( ,0) (( ) )( ), ( ,1) ( )( )

(0, ) (1, ), ,

X s s H s s

H t x H t s t I

          


   
 

(3.6.1) 

Such a homotopy is given by the formula 
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(4 /( 1)) 0 ( 1) / 4

( , ) (4 1 ) ( 1) / 4 ( 2) / 4

((4 2 ) /(2 )) ( 2) / 4 1

s t s t

H s t s t t s t

s t t t







   


      
       

 

The motivation for writing this homotopy comes from Fig.3.10. 

  

We divide the square I I  into three quadrilaterals: 

1

2

3

: 0 ( 1) / 4

: ( 1) / 4 ( 2) / 4

: ( 2) / 4 1,

Q s t

Q t s t

Q t s t I

  

   

   

 

For instance, the equation of the line joining (1/4,0) and (1/2,1) would be 

4 1t s   and so the equation of the region 1Q  would be  

0 ( 1) / 4,0 1.s t t      

For a fixed ,t I  a typical horizontal line AB would have three pars. 

When t moves from 0to1, these three parts also change their positions. 

For t=0, we get a partition defining ( )     and for 1,t   we get a 

partition define ( )    . The map H is defined by 

1 2 3,,onQ onQ onQ    each of which is continuous. On their common 

boundary, the two definitions match yielding a nice map H. Hence, by 

the continuity lemma. H is continuous. Moreover, conditions (3.6.1) are 

evidently satisfied. This completes the proof that X  is associative. 

Remark 3.4.8.If   is a path joining 0x  with 1,x   is a path joining 1x  

with 2x  and   is a path joining 2x  with 3 ,x  then the same proof as above 

says, more generally ,that 

 ([ ] [ ] [ ] ( )         
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 ( )      

   ([ ] ).    

There exits an identify element in 1 0( , ) :X x  Let us consider the constant 

loop 0 : .xC I X  We claim that the class   2 0( , )xoC X x  is an identity 

element ,i.e., for each loop in X  based at 0 ,x we show that 
0 0
 x xC R  

and .  xo xoC R For this let us consider Fig.2.11. 

 

Define a map :H I I X by   

0 0 (1 ) / 2
( , )

(2 1) /( 1)) (1 ) / 2 1

x s t
H s t

s t t t s

  
 

     
 

Note that the equation of the line joining (1/2,0) and (0,1) is X  .H maps 

the whole triangle below this line to the point X  and the two definitions 

of H on the line X  match. The continuity of H follows from the 

continuity lemma. Furthermore, 

0 0 1/ 2
( ,0)

0(2 1) 1/ 2 1

x s
H s

s s

 
 

  
 

0( )( )xC s   

( ,1) ( ).H s s  

and 0(0 ) (1, ).H t x H t  This shows that 0 0 . x xC R To prove that  

0[ ]xC  is also right identity, we can write a suitable path homotopy by 

looking at Fig. 3.12. 
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This would be 

0

(2 /1 )) 0 ( 1) / 2
( , )

(1 ) / 2 1

s t s t
H s t

x t s

    
 

  
 

More generally, we have 

Remark 3.4.9. Let   be any path joint 0x with 1x . Then the above proof 

implies 

 (1)[ ] [ ] [ ] [ ],xo xoC C      

 
1 1(2)[ ] [ ] [ ] [ ].x xC C      

In other words,  xoC  serves as the left identity and  1xC  serves as the 

right identity for any  [ ]  

Each element of  1 0( , )X x  has an inverse: let  1 0[ ] ( , ).X x   We 

choose a representative, say   , of the homotopy class  [ ].  For this  

,we define a loop  
' : I X  by 

'( ) (1 ).t t    

Geometrically,  
'  simply describes the same path as   , but in reverse 

direction, .We claim that the homotopy class  
'

1 0[ ] ( , )X x   does not 

depend on the choice of   from the class  [ ].  For, suppose   0 Rx  

by a homotopy  H . Then we can define a homotopy    
' :H I I X   by 

  
'( , ) (1 , ).H s t H s t   

Then, obviously,  
'X  is a homotopy from  

' ' ' ', . .,[ ] [ ].to i e     .Now 

we claim that 
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' '[ ] [ ] [ ] [ ] [ ].xoC      

For this, we must construct a homotopy from X  relative to X  We now 

consider Fig. 3.13. 

 

Fig.3.13 

Just as in earlier cases, the required homotopy :H I I X   is given by 

0

0

0 / 2

(2 ) / 2 1/ 2
( , )

(2 2 ) 1/ 2 1 / 2

1 / 2 1.

x s t

s t t s
H s t

s t s t

x t s





 


  
 

    
   

 

It is easily verified that   H  is well defined, continuous and has the 

required properties. By exactly a similar argument we can show that 

 
' 1

0[ ] [ ] [ ].xC    

Thus ,  [ ']  is an inverse of 
1 0[ '] ( , ).in X x       

Remark 3.4.10.The same proof says that, more generally, if   is a path 

joining 
0 1,x with x then its inverse path  

1   has the following properties. 

 

1

1

1

[ ] [ ] [ ],

[ ] [ ] [ ].

xo

x

C

C

 

 








 

Remark 3.4.11. In the proof of the preceding theorem, it was enough to 

show that  1 0( , )X x  has a left identify and each element of  1 0( , )X x  

has a left inverse -this is a result from elementary group theory. 

However, we have shown the existence of two-sided identity and two-

sided inverse only to give more practice of writing path homotopies. 
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Remark 3.4.12. We also note that if  , , ,     are four loops based at  

,ox X  then by the associative law proved above, we find that  

 0 0( ) ( ) ( ( )) (( ) )                   x xR R  

and so the generalized associative law is valid in the sense that placing of 

parentheses does not make any difference in the homotopy class. 

Therefore, we can just ignore the parentheses and write the above loop 

only as  [ ].       

Definition 3.4.13. Let X  be a topological space and  0 .x X  Then the 

group  1 0( , )X x  obtained in Theorem 2.4.7 is called the fundamental 

group or the Poincare group of the space X  based at  
0 .x X  

Remark 3.4.14. At this stage one would like to see examples of 

fundamental group so some spaces. We will give several examples 

somewhat later, but before that it would be helpful to prove a few results 

on the behaviour of fundamental group so that one can have some idea 

about the possibilities of the nature of fundamental group of a given 

space. We should also point out here that it is in the very nature of 

algebraic topology that computing associated algebraic objects is 

normally a long process and sometime can also be extremely difficult. 

Having defined the fundamental group of a space X  based at a point 

0 ,x X one would naturally like to ask: how important is the role of base 

point 
0x  in the group  1 0( , )?X x   How are  1 0( , )X x  and  1 1( , )X x  

related if  0 1 ?x x   In fact, if X  is arbitrary, then a loop at  0x  being 

itself path connected, will be completely in the path component of  0x  

and so if  0 1,x x  are in distinct path components of X, then  

1 1 1( , ), ( , )oX x X x   are not related at all. However, if  0 1,x x  belong to 

the same path component of  X  then  1 0( , )X x  and  1 1( , )X x  are 

indeed isomorphic. This follows from the next 
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Fig.3.14 

Theorem 3.4.15. Let X be a path connected space and  0 1,x x  be any two 

points of  X . Then  1 0( , )X x  and  1 1( , )X x  are isomorphic. In fact, 

each path joining  0 1x tox  defines on   isomorphism from 

1 0 1 1( , ) ( , ).X x to X x   

Proof. Consider Fig.3.14 Let   I X   be a path joining  1ox to x  and 

suppose  
1   is the inverse path of  

1, . ., ( ) (1 )i e t t     for each  .t I  

If a X  is any loop based at  ox , then it is clear that  
1      is a loop 

based at  1.x  Thus, we can define a map 

 1 0 1 1: ( , ) ( , )P X x X x    

by 

 
1:[ ] [ ].P        

First, we check path  P  is well define, Suppose  xo   and let  

:H I I X   be  a homotopy  relative to  {0,1}  from  to   .Then by 

Corollary 2.4.2,  
1 1 ,          which means  [ ] [ ].P P    

Now, let us see the following computation: 

 ([ ] [ ]) [ ]P P       

           1[ ( ) ]        

        1[ ] [ ]       

       
1

0[ ] [ ]xC        

      1 1[ ] [ ]            
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        [ ] [ ].P P    

If we use  
1   instead of   , then we get a homomorphism 

 1 1 1 1 0: ( , ) ( , .)P X x X x


    

Now, for each  1 0[ ] ( , ),X x  we have 

1 1

1[ ] [ ]P P P 
    

    

 1 1[ ]           

 [ ],  

Which means  1P P 
 is identity on  1 0( , ).X x  By a similar argument, 

we see that  1P P   is identity on  1 1( , ).X   It follows that  P  is an 

isomorphism. 

Remark 3.4.16. It follows from the above theorem that for a path 

connected space X, the fundamental group  1( , )X x  is independent of 

the base point  x  up to isomorphism of groups. Therefore, for a path 

connected space X , we can denote  1( , )X x  simply by  1( )X  ignoring 

the mention of the base point  x , and call it the fundamental group of the 

space X . 

Since the isomorphism  P  depends on the path    joining  0x with  1x , 

we can examine the question as to how much  P  depends on the path  

  itself. We have. 

Proposition  3.4.17. If  
',   are two paths joining  0 1x to x  which are 

path homotopic, then the induced isomorphisms  P  and   'P are 

identical. 

Proof. If  
',   are path homotopic, then it is easily seen that  

1   and  

' 1( )   are also path homotopic. It  follows that for any loop a based at   

1

0 ,x     is path homotopic to    
' 1( )    and therefore  

1      is 

path homotopic to  
' 1 '( ) .      this means  '[ ] [ ]P P 

  . 
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Proposition 3.4.18. Let X be a path connected space and 
0 1, .x x X Then 

1 0( , )X x  is abelion if and only  it for each pair of paths  
',   from  

' .P P 
  

Proof. Assume that  1 0( , )X x  is abelian. Since  
' 1( )   is  a loop based 

at  0x  we observe that for each  1 0[ ] ( , ),X x   

 ' 1 ' 1[ ( ) ] [ ] [ ( ) ],        

Which means 

 
' 1 ' ' 1[( ) ] ] [ ( ) ],          

Conversely,  suppose  [ ],[ ]   are two elements of  1 0( , ),X x  Let    be 

a path in X  joining  0x  with 
1x . Then     is also a path joining  0x  

with  1x  .Hence by the given condition.  [ ] [ ].P P      This means. 

 
1 1[( ) ( )] [ ].                

Since  
1 1 1( )         ,therefore,  

1( ] [ ],        i.e.,  

[ ][ ] [ ][ ].     

  Note that to each pointed topological space  ( , ),X x  we have associated 

its fundamental group    1( , ).X x Next, we show that for every 

continuous map  : ( , ) ( , )f X x Y y  of pointed spaces, there is an 

induced group homomorphism  f between their fundamental groups. 

Theorem3.4.19.Every continuous map  : ( , ) ( , )f X x Y y  of pointed 

spaces induces a group homomorphism  # 1 1: ( , ) ( , )f X x Y y   

Proof. Let    be a loop in X  based at  x  . Then  f   is a loop based at  

y. More over if  
', xoR  say, by a homotopy H , then one can easily see 

that  
' ',   y xof R f if R say, by the homotopy H . Hence, we define 

a map  # 1 1: ( , ) ( , )f X x Y y   by  

   
# : ([ ]) [ ].f f   
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To we that  #f  is a homomorphism, observe that for any two loops  ,   

based at  x  we have 

 ( ( ))( ) (( )( ))f t f t       

 
( (2 )) 0 1/ 2

( (2 1)) 1/ 2 1

f t t

f t t





 
 

  
 

   
( )(2 ) 0 1/ 2

( )(2 1) 1/ 2 1

f t t

f t t





 
 

  
 

 (( ) ( ))( )f f t    

 For each  ,t I  which means  ( ) ( ) ( ).f f f       Hence 

# #([ ] [ ]) [ ]f f      

                           ( )]f     

                                   [( ) ( )]f f    

                           
# #[ ] [ ].f f   

Check Your Progress: 

1. Prove: Theorem :Let  Then the relation of ―being equivalent‖ in 

the set of all paths starting from   and terminating at   is an equivalence 

relation. 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

2. Prove : Theorem: The set   of all path homotopy classes of loops 

based at   is a group with respect to the binary operation   define above. 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 
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3. Prove: Theorem: Let  be a path connected space and    be any two 

points of   . Then    and    are isomorphic. In fact, each path joining    

defines on   isomorphism from   

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

 

3.4 LET US SUM UP 
 

Let 0 1, .x x X Then the relation of ―being equivalent‖ in the set of all 

paths starting from 0x  and terminating at 1x  is an equivalence relation. 

The set 1 0( , )X x  of all path homotopy classes of loops based at 0x  is a 

group with respect to the binary operation " " define above. 

Let X be a path connected space and  0 1,x x  be any two points of  X . 

Then  1 0( , )X x  and  1 1( , )X x  are isomorphic. In fact, each path joining  

0 1x tox  defines on   isomorphism from 
1 0 1 1( , ) ( , ).X x to X x   

If  
',   are two paths joining  0 1x to x  which are path homotopic, then 

the induced isomorphisms  P  and   'P are identical. 

Every continuous map  : ( , ) ( , )f X x Y y  of pointed spaces induces a 

group homomorphism  # 1 1: ( , ) ( , )f X x Y y  . 

3.5 KEY WORDS 
 

Path in a topological space 

Homotopy classes of loops 

Fundamental group 

A group homomorphism 
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Isomorphism‘s   

3.6 QUESTIONS FOR REVIEW 
 

1. Every continuous map  : ( , ) ( , )f X x Y y  of pointed spaces induces 

a group homomorphism  # 1 1: ( , ) ( , )f X x Y y   

2. Explain about product of two paths in topological spaces 

3. Explain about properties of fundamental group 
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3.8 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. See sub section 3.4.2 

2. See sub section 3.4.7 

3. See sub section 3.4.15 
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UNIT-4 CW-COMPLEXES 
 

STRUCTURE 

4.0 Objective 

4.1 Introduction 

4.2 Basic definitions 

4.3 Comments on the definitions of CW- complex 

4.4 Operations on CW complexes 

4.5 Examples on CW-Complexes. 

4.6 CW- structure of the Grassmanian mainfolds 

4.7 Let us sum up 

4.8 Key words 

4.9 Questions for review 

4.10 Suggestive readings and references 

4.11 Answers to check your progress 

4.0 OBJECTIVE 

 

In this unit we will learn and understand about definitions of CW-

complex, operations on CW- complexes, examples of CW-complexes, 

CW-structure and related theorems. 

4.1 INTRODUCTION 
 

Algebraic topologists rarely study arbitrary topological spaces: there is 

not much one  can prove about an abstract topological space. However, 

there is very well-developed area known as general topology which 

studies simple properties. (such as connectivity, the Hausdorff property, 
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compactness and so on) of complicated spaces. There is gaint Zoo out 

there very complicated spaces endowed with all possible degrees of 

pathology i.e., when one or another simple property fails or holds.  

Some of these spaces are extremely useful, such as the Cantor set or 

fractals, they help us to understand very delicate phenomenas observed 

in mathematics and physics. In algebraic topology we mostly study 

complicated properties of simple spaces. 

In turns out that the most important spaces which are important for 

mathematics have some additional structures. The first  algebraic 

topologist, Pincare, studied mostly the spaces endowed with ―analytic‖ 

structures, i.e., when a space X has natural differential structure of 

Riemannian metric and so on.  

The major advantage of these structures is that they all are natural, so we 

should not really care about their existence: they are given! There is the 

other type of natural, so we should not really care about their existence: 

they are given! There is the other type of natural structures on 

topological spaces: so called combinatorial structures, i.e, when a space  

X comes equipped with a decomposition into more or less ‗standard 

pieces‘, so that one could study the whole space X by examination the 

mutual geometric and algebraic relations between those ―standard 

pieces‖.  

Below we formalize this concept: these spaces are known as  CW -

complexes.  

4.2 BASIC DEFINITIONS 
 

We will call an open disk  nD (as well as any space homeomorphic to  

)nD  by   .n cell Notation:  .ne We will use the notation ne for a ―closed 

cell‖ which is homeomorphic to nD .For  0n  we let   0 0e D (point). 

Let  ne be a ―boundary‖ of the cell 

 :n ne e is homeomorphic to the sphere  1nS  .Recall that if we have a 

map 1nS   then we can construct the space 1nS  such that the diagram. 
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Commutes. We will call this procedure on attaching of the cell  ne to the 

space  .K  The map  : ne K    is the attaching map, and the map  

: n ne K u e  the characteristic map of the cell  .ne Notice that   is a 

homeomorphism of the open cell  ne on its image. 

An example of this construction is the diagram (10), where the maps   

: n ne S RP  and  2 1: k nh S CP   are the attaching maps of the 

corresponding cells 1 2 2n ne and e  .As we shall see below, 

 
1 1 2 1n n n n n n

c kRP e RP and CP e CP        

We return to this particular construction a bit later. 

Definition 4.1. A Hausdroff topological space  X is a  CW computer (or 

cell-complex)if it is decomposed as a union of cells: 

 
0

,
g

q

i
q x I

X e


 

 
  

 
 

Where the cells    , ,q p q

i j ie e unless q p i j and for eache    there 

exists a characteristic map  : qD X   such that its restriction q
D

  

gives a homeomorphism :

q

q

q

i
D

D e  .It is required that the following 

axioms are satisfied. 

(C) (Close finite): The boundary  \q q q q

i i i ie e e of thecell e   is a subset 

of the union of finite number of cells , .r

je wherer q   

(W) (Weak topology): A set F X is closed if and only if the 

intersection  nF e  is closed for every cell  .q

ie  
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Example 1. The sphere nS . There are two standard cell decompositions 

of  nS  

(a) Let  0e  be a point (say, the north pole (0,0,...,0,1) and  

0 0\ , .n n n ne S e so S e e  A characteristic map  n nD S which 

corresponds to the cell  ne may be defined by 

 
1 2 1( , ,..., ) ( sin ,..., sin ,cos ),n nx x x x p x p p    where  

2 2

1 ... np x x    

(b) We define  0 ,n n q

qS e   where 

  1 1 2 1 1( ,... ) ... 0, 0 ,q n

n q n qe x x S x x and x            see Fig. 11 

 

There exist a lot more cell decompositions of the sphere :nS  one can 

decompose nS on 1(3 1)n  cells as a boundary of   ( 1)n  dimension 

simplex
4
  1n or on  2(2 2)n  cells as a boundary of the cube  .nI  

Exercise 4.1. Describe these cell decompositions of  nS . 

Example 2.  Any of the above cell decompositions of the sphere  1nS   

may be used to construct a cell decomposition of the disk nD by adding 

one more cell  : .n nId D D The most simple one gives us three cells. 

4
 A simplex  k determined as follows: 

 1 1

1 1 1 1 1( ,..., ) 0,..., 0, 1 .k k k

k k i ix x R x x x 

         

4.3. COMMENTS ON THE DEFINITION 

OF A CW-COMPLEX 

 

01  Let  X  be a   CW -complex. We donate  ( )nX the union of all cells in 

X of dimension  .n This is the  n th skeleton of  X . The n th  



Notes 

75 

skeleton ( )nX is an example (very important one) of a subcomplex of a 

CW -complex. A subcomplex  A X is a closed subset of A which is a 

union of some cells of X .In particular, the n th skeleton  ( )nA is a 

subcomplex of ( )nX for each 0n  .A map  :f X Y  of CW -complex 

is a cellular map if  
( )inf X maps the n th  skeleton  to the n-skeleton 

( )nY for each  0n  .In particular, the inclusion  A X of a subcomplex 

is a cellular map.  ACW   –complex is called finite if it has a finite 

number of cells.   ACW -complex is called locally finite if X has a finite 

number of cells in each dimension. Finally  
0( , )X x  is a pointed CW -

complex,  
0x is  a 0 cell. 

Exercise 4.2: Prove that aCW -complex compact if and only if it is finite. 

 02 It turns out that a closure of a cell within a CW -complex may be not 

aCW -complex. 

Exercise 4.3: Construct a cellular decomposion of the wedge  

1 2X S S  (with a single 2-cell  2 )e  is not a CW subcomplex of X . 

 The axiom  ( )W does not imply the axiom ( ).C Indeed, consider a 

decomposition of the disk  2D into 2-cell 2e which is the interior of the 

disk  2D  and each point the circle   1S is considered as a zero cell. 

Exercise 4.4. Prove that the disk 2D with the cellular decomposition 

described above satisfies  ( ),W and does not satisfy  ( ).C  

 

 The axiom ( ).C does not imply the axiom  ( ).W Indeed, consider the 

following space  .X We start with an infinite (even countable) family  I

of unit intervals. Let  ,X I    and  "

" .t I


 Then a distance is defined 

by 

 

' " ' "

' "

' " ' "
( , )

t if
p t t

t t if
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Exercise 4.5. Check that a natural cellular decomposition of  X into the 

interior of  I and remaining points (zero cells) does not satisfy the axiom 

(W). 

4.4 OPERATIONS ON CW-COMPLEXES 
 

All operations we considered are well-defined on the category of  CW 

complexes, however we have to be a bit careful. If one of the CW 

complexes  X and Y  is locally finite, then the product  X Y  of pointed  

CW  complexes. The cone  ( ),C X  cylinder  ,X I and suspension  

( )X has canonical   CW  structure determined by X .We can glue 

CW  complexes  :fX Y if f A Y a cellular map, and  A X  is a 

subcomplex. Also the quotient space  /X Ais a CW   complex if  

( , )A X  is a CW pair. The functional spaces  ( , )C X Y  are two bit to 

have natural CW  structure, however, a space  ( , )C X Y  is homotopy 

equivalent to a  CW  complex if  X and Y are CW  complexes. The 

last statement is a nontrivial result due to J. Milnor (1958) 

4.5 MORE EXAMPLES OF CW 

COMPLEXES 
 

Real projective space  .nRP Here we choose in .nRP  a sequence of 

projective subspaces. 

 0 1 1... .n nRP RP RP RP       

And set  0 0 1 1 0 1, \ ,... \ .n n nc RP c RP RP c RP RP     The diagram (10) 

shows that the map  1 kk RP  is an attaching map, and its extension to 

the cone over  1kS   (the disk )kD is a characteristic map of the cell  .ke  

Alternatively this decomposition may be described in the homogeneous 

coordinates as follows. Let 

  0 1 1( : : ... : ) 0, 0,... 0 .q

n q q ne x x x x x x     

Exercise 4.6. Prove that  qe is homeomorphic to  1\ .q qRP RP   

Exercise4.7. Construct cell decompositions of  .n nCP and HP  
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Exercise 4.8. Represent as  CW  complex every 2-dimensional 

manifold. Try to find a CW  into Euclidean space of finite dimension. 

4.6 CW-STRUCTURE OF THE 

GRASSMANIAN MANIFOLDS 
 

We describe here the Schubert decomposition, and the cells of this 

decomposition are known as the Schubert cells. We consider the space  

( , ).G n k  We choose the standard basis  
1 1,..., . ,..., .n q

n qe e of R Let R e e

it is convenient to denote   0 0 .R   We have the omcisopms‖ 

   0 1 2 ... .nR R R R     

Let  ( , ).G n k   Clearly   determines a collection of nonnegative 

numbers 

1 20 dim( ) dim( ) 1.R R    Indeed, we have linear maps 

(11)      10 i j thcoordinatej jR R R      

Where the first one,  1: ,j ji R R   is an embedding, and the map 

 : jj thcoordinate R R   

Is either onto or zero. In the first case dim    

1( ) dim( ) 1,j jR R   and in the second case  

1( ) dim( ).j jR R   Thus there are exactly  k  ―jumps‖ in the 

sequence  1(0,dim( ),...,dim( )).nR R   

A Schubert symbol  
1( ,..., )n    is a collection of integers, such that  

 
1 21 ... .k n        

Let  ( ) ( , )e G n k   be the following se of the following  

nk planes in R  

 1( ) ( , ) dim( ) & dim( ) 1, 1,..., .je G n k R j R j j k
          

Notice that every ( , )G n k  belongs to exactly one subset   ( ).e 

Indeed, in the sequence of subspaces. 

1 2 ... nR R R        

Their dimensions ―jump‖ by one exactly  k times. Clearly  

1( ), ( ,..., )ne where      and 
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 min dim ( ) .j

t j R t    

Our goal is to prove that the set  ( )e  is homeomorphic to an open cell of 

dimension  
1 2( ) ( 1) ( 2) ... ( ).kd k           Let  j nH R  

denote an open ―half  :jj planeof R  

  1( ,..., ,0...,0) | 0 .j

j jH x x x   

IT will be convenient to denote   1( ,..., , 0...,0) | 0 .
j

j jH x x x   

Claim 4.1. A  k plane belongs to ( )e  if and only if there exists its 

basis  1 ,,..., k   such that  1 .kH   

Proof. Indeed, if thee is such a  basis   
1,..., k then   

 1dim( ) dim( )j jR R
 

   

For  1,..., .j k  Thus  ( ).e  The following lemma proves Claim 4.1 

in the other direction.   

Lemma4.2 Let  ( ),e  where  
1( ,..., ).n   Then there exists a 

unique orthonormal basis   
0

1 1,..., , ,..., .k

k kof sothat H H       

Proof. We choose  
1 to be a unit vector which generates the line  

.iR  There are only two choices here, and the condition that the  

1 th  coordinate it positive determines  
1 uniquely. Then the unit 

vector  
2

2 R  should be chosen so that  
2 1.  There are two 

choices like that, and again the positivity of the  
2 th  coordinate 

determines  
2 uniquely. By induction one obtains the required basis. 

This completes proof of Lemma 4.2 and Claim 4.1. 

We define the following subset of the Stiefel manifold  ( , ) :V n k  

  1

1 1( ) ( ,..., ) ( , ) ,..., .k

k kE V n k H H
         

Lemma 4.2 gives a well-defined map  : ( ) ( ).q e E   It is convenient 

to denote    1

1 1( ) ( ,..., ) ( , ) | ,..., .
k

k kE V n k H H
 

        

Claim4.2. The set  ( ) ( , )E V n k   is homeomorphic to the closed cell of 

dimension  
1 2( ) ( 1) ( 1) ... ( ).kd k           Furthermore the map  

: ( ) ( )q e E   is a homeomorphism. 
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 Proof. Induction on k. If  1k   the set  1( )E   consists of the vectors 

 
1 11 1 1( ,..., ,0,...,0),x x   such that  

2

1 11, 0.j ix and x    

Clearly 1( )E   is a closed hemisphere of dimension  1 1( 1), . . ( )i e E   is 

homeomorphic to the disk  1.iD   

To make an induction step, consider the following construction. Let  

, nu R  be two unit vectors such that  ,. uu LetT    an orthogonal 

transformation  n nR R  such that  

(1) , ( ) ;vT u 
  
 

1

, ( ) , .vT if u      

In other words,  ,vT  is a rotation in the plane  ,u   taking the vector  

,uto  and is identity on the orthogonal complement to the plane ,u   

generated by  .uto  

Claim 4.3. The transformation ,vT  ( , , )nwhereu R u    has the 

following properties: 

 ,( ) ;u ua T Id  

 
1

, ,( ) ;u u ub T T 

  

 ,( ) : n n

u uc T R R isbe givenby  

,

,
( ) ( ) 2 , ;

1 ,
u u

u x
T x x u u x

u


 




   


 

 ,( ) ( )u ud avectorT x
 
Depends continuously on  , , ;u x  

 ,( ) ( ) (mod ) , .j j

ue T x x R if u R    

The properties (a),(b),(e) follow from the definition. 

Exercise 4.10. Prove (c),(d) form Claim 4.3. 

Let  i

iLet H


 be a vector which has  
i -coordinate equal to 1, and all 

others are zeros. The  
1( ,..., ) ( ).k E    For each k-frame  

1( ,..., ) ( )k E    consider the transformation: 

(12)  , 1, 1, 11
: n n

k k k k
T T T T R R    
   

First we notice that  
1

sin :
k

i i ice H


 


    

 
1

1, , 0, 1,..., .
k

jD u H u u j k
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Exercise 4.11. Prove that the transformation T takes the k-frame  

1( ,..., )k   to the frame  
1( ,..., ).k   

Consider the following subspace  
1

:
k

D H
 

  

  
1

| 1, , 0, 1,..., .
k

jD u H u u j k
 

       

Exercise 4.12. Prove that D is homeomorphic to the hemisphere of the 

dimension  
1 1.k k     

This D is a closed cell of dimension 
1 1.k k    Now we make an 

induction step to comple a proof of Claim 4.2 We define the map 

 1 1 1: ( ,..., ) ( ,..., , )k k kf E D E        

By the formula  
1 1(( ,..., ), ) ( ,..., , )k k uf u T    Where  T  is given by 

(12). We notice that  

  , , , 0, 1,..., ,i u i u iT T T u i k        

And  , , 1u uT T u u  by definition of  sin ( ).T and ceT O n  

Exercise 4.13. Recall that  
1.k k   Prove that  

1

.
k

Tu H if u D
 

   

The inverse map  
1

1 1 1: ( ,..., , ) ( ,..., )k k kf E E D    

   is defined by 

 
1 , 1,..., ,j jf j k    

  

 
1 1

1 1 1, 1 2, 2 , 1( ) ...... ( ) .k k e e k ek ku f T T T T D     

       

Both maps  1f and f   are continuous, thus  f  is a homeomorphism. 

This concludes induction step in the proof of Claim 4.2. Lemma 4.2 

implies that  
1( ,..., )ke    is homeomorphic to an open cell of dimension  

1 1( ) ( 1) ( 2) ... ( ).kd k           

Remark: Let  1( ,..., ) ( ) \ ( ),k E E    then the k-plane  1,..., k    

does not belong to  ( ).e   Indeed, it means that at least one vector 

 1
.j

j

j R H


 


  Thus dim 
1

( ,jR j here


 


  ( ).e   

Theorem 4.3. A collection of  
k

n

 
 
 

 cells   e  gives   ,G n k a cell-

decomposition. 
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Proof. We should show that any point x of the boundary of the cell  ( )e 

to see that   ( ( )) ( ).q e E   Thus we can describe  ( ) \ ( )e e    as a 

k-plane  1,..., ,k  where  .
j

j H


  Clearly  
j

j R


  ,thus dim  

( )
j

R j


  for each  1,..., .j k Hence  
1 1,..., .k k     However, at 

least one vector  j  belongs to the subspace   1 ,
j

jR H
    and 

corresponding  .j j  Thus  ( ) ( ).d d  The number of all cells is 

equal to 
k

n

 
 
 

by counting.   

Now we count a number of cells of dimension r in the cell 

decomposition of  ( , ).G n k  Recall that a partition of an integer  r  is an 

unordered collection  
1( ,..., )si i such that  

1 ... .si i r   Let  ( )p r  be a 

number of partitions of r .This are values of ( )p r for  10.r   

 r  0 1 2 3 4 5 6 7 8 9 10 

( )p r  1 1 2 3 5 7 11 15 22 30 42 

 

Each Schubert symbol  
1( ,..., )k   of dimension  

1 2( ) ( 1) ( 2) ... ( )kd k r            which is given by deleting 

zeros from the sequence  
1 1( 1), ( 2),..., ( ).k k      

Exercise 4.14. Show that 

1 21 ... , .si i i k and s n k        

Prove that a number of r-dimensional cells of  ( , )G n k  is equal to a 

number of partitions  
1( ,..., )si i  of  r such that  .ts n k and i k    

Remark. There is a natural chain of embeddings  

( , ) ( 1, ) ... ( , ).G n k G n k G n l k     It is easy to notice that these 

embeddings preserve the Schubert cell decomposition, and if  l and k are 

large enough, the number of cells of dimension  ( ).r is equal to p r  In 

particular, the Schubert, cells give a cell decomposition of  

( , ) ( , ).  G k and G  

Remark.  
1( ,..., )sLet i i   be a partition of  r  as above  

1( . . 1 ... ).si e s n k and i i k       The partition    may be represented 

as a Young tableau. 
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This Young tableau gives a parametrization of the corresponding cell  

( ).e  Clearly the Schubert symbols   are in one-to-one correspondence 

with the Young tableaux corresponding to the partitions  
1( ,..., )si i  as 

above. The Young tableaus were invented in the representation theory of 

the symmetric group  .nS This is not an accident, it turns out that there is 

a deep relationship between the Grasmannian manifolds and the 

representation theory of the symmetric groups. 

 

  

Check your progress : 

 

1. Prove: A  k plane belongs to ( )e  if and only if there exists 

its basis  1 ,,..., k   such that  1 .kH   

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

2. Prove: The set  ( ) ( , )E V n k   is homeomorphic to the closed 

cell of dimension  
1 2( ) ( 1) ( 1) ... ( ).kd k           Furthermore 

the map  : ( ) ( )q e E   is a homeomorphism. 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

3. Prove: A collection of  
k

n

 
 
 

 cells   e  gives   ,G n k a cell-

decomposition 



Notes 

83 

__________________________________________________________

__________________________________________________________

________________________________________________________ 

4.7 LET US SUM UP 
 

A Hausdroff topological space  X is a  CW computer (or cell-complex)if 

it is decomposed as a union of cells: 
0

,
g

q

i
q x I

X e


 

 
  

 
 

A set F X is closed if and only if the intersection  nF e  is closed 

for every cell  .q

ie  

ACW -complex is called locally finite if X has a finite number of cells in 

each dimension. Finally  
0( , )X x  is a pointed CW -complex,  

0x is  a 0 

cell. 

We describe here the Schubert decomposition, and the cells of this 

decomposition are known as the Schubert cells. 

Let  X be a  CW -complex and  A X  be its sub complex. Then  /X A 

is homotopy equivalent to the complex  ( ), ( )X C A WhereC A  is a cone 

over  .A  

Any continuous map   :f X Y of CW -complexes is homotopic to a 

cellular map. 

A finite triangulation of a subset  nX R is a finite  covering of  X  by 

simplices       ( )n i  such that each intersection  ( ) ( )n ni j   either 

emplty, or 
1( ) ( ) ( )n n n

ki j i     

 For some  0,..., .k n  

 

4.8 KEY WORDS 
 

Hausdroff topological space 
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Borsuk pair 

Simplicial complexes 

Definitions of the CW-Complexes 

CW-Structure 

Homotopy 

4.9 QUESTIONS FOR REVIEW 
1. Write the definitions of CW- Complexes with examples. 

2. Explain about Structure of Grassmanian manifolds. 

3. Prove: A collection of  
k

n

 
 
 

 cells   e  gives   ,G n k a cell 

decomposition. 
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4.11 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. See Claim 4.1 

2. See Claim 4.2 

3. See Theorem 4.3 
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UNIT-5 CW-HOMOTOPY 
 

STRUCTURE 

5.0 Objective 

5.1 Introduction 

5.2 Borsuk‘s Theorem on extension of homotopy 

5.3 Cellular approximation theorem 

5.4 Let us sum up 

5.5 Key words 

5.6 Questions for review 

5.7 Suggestive readings and references 

5.8 Answers to check your progress 

5.0 OBJECTIVE 
 

In this unit we will learn and understand about CW- complexes and 

homotopy, Borsuk‘s Theorem on extension of homotopy, Cellular 

approximation theorem, definitions and theorems. 

5.1 INTRODUCTION 

 

In topology, a CW complex is a type of topological space introduced 

by J. H. C. Whitehead to meet the needs of homotopy theory. This class 

of spaces is broader and has some better categorical properties 

than simplicial complexes, but still retains a combinatorial nature that 

allows for computation (often with a much smaller complex). 

Roughly speaking, a CW complex is made of basic building blocks 

called cells. The precise definition prescribes how the cells may be 

topologically glued together. The C stands for "closure-finite", and 

the W for "weak" topology. 

https://en.wikipedia.org/wiki/Topology
https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/J._H._C._Whitehead
https://en.wikipedia.org/wiki/Homotopy_theory
https://en.wikipedia.org/wiki/Category_theory
https://en.wikipedia.org/wiki/Simplicial_complex
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An n-dimensional closed cell is the image of an n-dimensional closed 

ball under an attaching map. For example, a simplex is a closed cell, and 

more generally, a convex polytope is a closed cell. An n-dimensional 

open cell is a topological space that is homeomorphic to the n-

dimensional open ball. A 0-dimensional open (and closed) cell is 

a singleton space. Closure-finite means that each closed cell 

is covered by a finite union of open cells. 

A CW complex is a Hausdorff space X together with a partition of X into 

open cells (of perhaps varying dimension) that satisfies two additional 

properties: 

 For each n-dimensional open cell C in the partition of X, there exists 

a continuous map f from the n-dimensional closed ball to X such that 

o the restriction of f to the interior of the closed ball is 

a homeomorphism onto the cell C, and 

o the image of the boundary of the closed ball is contained in the 

union of a finite number of elements of the partition, each having cell 

dimension less than n. 

 A subset of X is closed if and only if it meets the closure of each cell 

in a closed set. 

5.2 BORSUK’S THEOREM ON 

EXTENSION OF HOMOTOPY 
 

We call a pair (of topological spaces)  ( , )X A a Borsuk pair, if for any 

map  :F X Y a homotopy  : ,0 1,tf A Y t   such that  
0 / Af F

may be extended up to homotopy  : ,0 1,tF X Y t   such that  

0\ .t A tF f and F F   

  

Figure  

A major technical result of this subsection is the following theorem. 

https://en.wikipedia.org/wiki/Closed_ball
https://en.wikipedia.org/wiki/Closed_ball
https://en.wikipedia.org/wiki/Attaching_map
https://en.wikipedia.org/wiki/Simplex
https://en.wikipedia.org/wiki/Convex_polytope
https://en.wikipedia.org/wiki/Open_ball
https://en.wikipedia.org/wiki/Singleton_(mathematics)
https://en.wikipedia.org/wiki/Cover_(topology)
https://en.wikipedia.org/wiki/Hausdorff_space
https://en.wikipedia.org/wiki/Partition_of_a_set
https://en.wikipedia.org/wiki/Continuous_function#Continuous_functions_between_topological_spaces
https://en.wikipedia.org/wiki/Homeomorphism
https://en.wikipedia.org/wiki/Boundary_(topology)
https://en.wikipedia.org/wiki/Closed_set
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Theorem : (Borsuk) A pair  ( , )X A of CW  complexes is a Borsuk pair. 

Proof. We are given a map   : 1A Y   (a homotopy )tf and a map  

 : 0 ,F X Y  such that     0 0
.

A A
F 

 
 We combine the maps  

F and to obtain a map 

' : ( 1) .F X A Y   

Where we identify   0 .A X and A A I    To extend a homotopy  
tf  

up to homotopy  
tF  is the same as to construct a map  :F X I Y  such 

that  ( ) .X A IF F  We construct  F by induction on dimension of cells of  

\ .X A  In more detail, we will construct maps 

 
( )

( ): (( ) )
n

nF X A X I Y   

fo each n=0,1,..such that  ( ) '

( ) .n

X A IF F  Furthermore, the following 

diagram will commute 

  

Where   is induced by the imbedding  ( ) ( 1).n nX X   

The first step is to extend  'F to the space  (0)( )X A X I  as follows: 

( ) ( ), 0
( , )

o F x if x is a cell from X and if x
F x t

 


( , ), .

A

x t if x A





 

Now assume by induction that 
( )n

F is defined on  ( )(( ) ).nX A X I

We notice that it is enough to define a map. 

( 1)
( ) 1: (( ) )

n
n nF X A X e I Y


    

Extending 
( )n

F to a single cell  

1 1 1, ( 1) \ .n n ne Let e bea n cell suchthat e X A      

By induction, the map 
( )n

F  is already given on the cylinder  

1 1( \ )n ne e I     since the boundary  

1 1 ( ) 1 ( 1). :n n n n ne e X Let g D X       be a characteristic map 
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corresponding to the cell  1ne  . We have to define an extension of  
( )

1

n

F  

from the side  ( )ng S I  and the bottom base   ( ) 0ng D  to the cylinder  

1( ) .ng D I   By definition of  CW  complex, it is the same as to 

construct an extension of the map 

 
( )

1: ( 0 ) ( )
n

n nF g D S I Y      

To a map of the cylinder  ' 1: .nD I Y Let     

 1 1: ( 0 ) ( )n n nD I D S I       

Be a projection map of the cylinder  1nD I  from a point s which is near 

and a bit above of the top side    1 1nD    of the cylinder 1nD I  ,see the 

Figure below. 

 

The map   is an identical map on   1( 0 ) ( ).n nD S I    We define an 

extension  '  as follows: 

 ' 1 1: ( 0 ) ( ) .n n nD I D S I Y         

This procedure may be carried out independently for all  ( 1).n  cells of  

,X  so we obtain an extension 

( 1)
( 1): (( ) ) .

n
nF X A X I Y


    

Exercise :Let  1 1n nD I R    given  by: 

 1 2 2

1 1, 2 1 1 2( ,..., ) ... 1, [0] .n

n n n nD I x x x x x x

          

Give a formula for the above map   . 

Thus, going from the skeleton  ( )nX to the skeleton  ( 1)nX  ,we construct 

an extension  :F X I Y  of the map  : ( ) .F X A I Y   

We should emphasize that if   X  is an infinite-dimensional complex, 

then our construction consists of infinite number of steps; in that case the 

axiom (W) implies that  F  is a continuous map. 

Corollary : Let X be a  CW -complex and  A X be its contractible sub 

complex. Then  X  is homotopy equivalent to the complex  / .X A  
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Proof. Let  : /p X X A be a projection map. Since  A is a contractible 

there exists a homotopy  :tf A A such that  
0 :f A A  is an identity 

map, and  
1 0( ) .f A x A   By Theorem 5.1 there exists a homotopy  

1 :f A A such that  
0 :f A A is an identity map, and  

1 0( ) .f A x A 

By Theorem 4.8 there  exists a homotopy  : ,0 1,tF X X t   such that  

0 XF Id and  | .t A tF f In particular,  
1 0( ) .F A x It means that 

1F may be 

considered as a map given on  / ,X A (by definition o f the quotient 

topology),i.e. 

1 : / ,p qF q p X X A X    

Where : /q X A X is some continuous map. By construction.  

1 0 , . . .XF R F i e q pRId .Now,   
1( )F A A for any t, i.e.  

0( ) .tp F A x  It 

follows that  ,t tp F h p where  : / /th X A X A  is some homotopy, 

such that  0 / 1 ;X Ah Id and h p q   it means that  
/ .X Ap qRId  

Corollary :Let  X be a  CW -complex and  A X  be its sub complex. 

Then  /X A is homotopy equivalent to the complex  

( ), ( )X C A WhereC A  is a cone over  .A  

5.3 CELLULAR APPROXIMATION 

THEOREM 
 

Let  X and Y  beCW -complexes. Recall that t map  :f X Y  is a 

cellular map if  ( ) ( )( )n nf X Y for every  0,1,....n  We emphasize that it 

is not required that the image of  n cell  belongs to a union of  n cells . 

For example, a constant map 
0

0: X x e   is a cell map. The following 

theorem provides very important tool in algebraic topology. 

Theorem 5.1 Any continuous map   :f X Y of CW -complexes is 

homotopic to a cellular map. 

We shall prove the following stronger statement: 

Theorem 5.2. Let  :f X Y be a continuous map of CW -complexes, 

such that a restriction   /f A is a cellular map on a  CW -sub complex  
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.A X Then there exists a cell map  :g X Y  such that  / /A Ag F

and, moreover,  .fg g rel A  

First of all, we should explain the notation  .f g rel A  

First of all, we should explain the notation  f g rel A  which we are 

using. Assume that we are given two maps  , :f g X Y  such that 

.A Af g A notation  f g rel A  means that there exists a homotopy  

:th X Y  such that  ( )th a does not depend on  t  for any  .a A  

Certainly f g rel A implies  f g ,but f g does not imply

f g rel A . 

Exercise :Give an example of a map  1:[0,1]f S  which is homotopic 

to a constant, map, and, at the same time  f  is not homotopic to a 

constant map relatively to     0 1 .A I   

Proof of Theorem 5.2 We assume that f  is already a cellular map not 

only on A, but also on all cells of  X of dimension less or equal to  

( 1).p   consider a cell  \ .pe X A The image  ( )pf e  has nonempty 

intersection only with a finite number of cells of  :Y this is because  

( )pf e is a compact. We choose a cell of maximal dimension  qe of Y

such that it has nonempty intersection with ( )pf e . If  ,q p then we are 

done with the cell  pe and we move to another  .p cell  Consider the 

case when  .p p  Here we need the following lemma. 

Lemma :(Free-point-Lemma) Let  U be an open subset of  ,pR and 

: qU D   be a continuous map such that the set  1( )V d U   is 

compact for some closed disk  0 .q qd D If  q p  there exists a 

continuous map  : qU D  such that 

1.  | \ | \ ;U v u v   

2. The image  ( )V  does not cover all disk  "d ,i.e. there exists a point   

" \ ( ).yo d U  

We postpone a proof of this Lemma for a while. 
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Remark: The maps  and  from Lemma 5.6 are homotopic relatively to  

\ :U V  it is enough to make a linear homotopy:  

1( ) (1 ) ( ) ( )h x t x t x    since the disk  qD  is a convex set. 

Claim 5.1 Lemma 5.4 implies the following statement: The map 

 ( 1)| p pAUX Ue
f  is homotopic rel  

( 1) 1 ( 1)( ) : ,p p pA X toa map f A X e Y   such that the image  

1( )pf e  does not cover all cell  .pe  

Proof. Indeed, let  : , :p qh D X k D Y  be the characteristic maps of 

the cells  p qe and e  respectively, Let 

1 1( ( )),p qU h e f c   

And let  : qU D   be the composition: 

11 .h f kp q q qU e f e e D
    

Let  qd  be a small disk inside  
q

D  (with the same center as  ).
q

D The 

set  1( )qV d  is compact (as a closed subset of the disk  ).
p

D   Let  

: qU D   be a map from Lemma 4.14. We define a map  ' ( )f onh U  

as the composition: 

1

( ) ,h q qh U U D Y

     

And  '( ) ( ) ( ).f x f x for x h U   Clearly the map 

' ( 1): p pf A X e Y   

Is continuous (since it coincides with  ( \ ))f onh U V and  

( 1)

' ( 1) ( 1): | ( ),p p

p p p

A X e
f A X e Y f rel A X

   

Moreover, 

( 1)

' ( 1) ( 1): | ( ( \ ( )))p p

p p p p

A X e
f A X e Y f rel A X e h V
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(the latter follows from a homotopy  ( \ )).rel U V   Also it is clear 

that  '( )pf e  does not cover all cell  .pe  

  

     Figure 

  

Figure  

5.1 Completion of the proof of Theorem 5.4 Now the argument is simple 

. Fistly, ahomotopy between the maps 

 ( 1)

' ( 1)| ( )p p

p

A X e
f and f rel A X


 

Can be extend to all  X  by Borsuk Theorem. In particular, we can 

assume that  'f with all above properties is defined on all X . 

Secondly, we consider a point  0

qy Y   which does not belong to the 

image  1( ),pf e and ―blow away‖ the map  
' | pe

f  from that point as it is 

shown at Fig. 15. This is a homotopy which may be described as follows. 

If  
' 1 ', ( ) ( ), ( ) ( ) .p q

tx e and x f thenH x f x for all t     

If  ' 1 ', ( ) ( ), ( )p qx e and x f then f x   moves along the ray connecting  

oy  and the boundary of  q  to a point on the boundary of q . 

We extend this homotopy to a homotopy of the map  ( 1)

'

.
| p pA X e

f   

(relatively to  ),pe and then up to homotopy the map   ' : .f X Y  The 

resulting map  "f is homotopic  to ' "( ), ( )pf and f and f e   does not touch 
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the cell  q and any other cell of dimension p . Now we can apply the 

procedure just described several times and we obtain a map  
1f

homotopic to  
1,f suchthat f  is a cellular map on the subcomplex  

( 1) .p pA X e Note that each time we applied homotpoy it was fixed on 

(relative to)  ( 1).pA X   It justifies the induction step, and proves the 

theorem. 

Exercise: Find all pints in the argument from ―Completion of the proof of 

Theorem 5.3‖ were we have used Borsuk Theorem. 

Remark. Again, if the  CW  complex  X  is infinite, then the axiom  

( )W  takes care for the resulting cellular map to be continuous. 

5.2 fighting a phantom: Proof of Lemma 5.1. There are two well-knwon 

ways to prove our Lemma. The first one is to approximate our map by a 

smooth one, and then apply so called Sard Theorem. The second way is 

to use a simplicial approximation of continuous maps. The first way is 

more elegant, but the second is elementary, so we prove our Lemma 

following the second idea. First we need some new ―standard spaces‖ 

which live happily inside the Euclidian space  .nR  

Let  111, ,.., qq n and    be vectors those endpoints do not belong to 

any  ( 1)q    dimensional subspace. We call the set. 

  1 1) 1 11 1 1 1 1( ,..., ... | ... 1, 0,..., 0q
q qq q qt t t t t t                

 a q Dimensional simplex. 

Exercise :  1 1

1 1 1 1 1( ,..., ) | 0,..., 0, 1 .q q q

q q i ix x R x x x 

         

Example. A  0 simplex is a point; a simplex  1 is the interval 

connecting two points; a simplex  2  is a non degenerated triangle in the 

space 2 ;R a simplex 3 is a pyramid in  nR with the vertices  

0 1 2 3, , , ,    see the picture below: 
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A  j th side of the simplex  

 1, 1 1 1 1 11 1( ,..., ,..., ) ... ( ,..., ) | 0 .q q
i j j q q qj q jt t t                 

We are not going to develop a theory of simplicial complexes this theory 

is parallel to the theory of  CW  complexes),however we need the 

following definition 

Definition : A finite triangulation of a subset  nX R is a finite  covering 

of  X  by simplices   ( )n i  such that each intersection  ( ) ( )n ni j   

either empty, or  

 
1( ) ( ) ( )n n n

ki j i     

For some  0,..., .k n  

Exercise: Let 1 ,...,n n

s  be a finite set of  n  dimensional simplexes in  

.nR  Prove that the union  1 2 ...n n n

sK      is a finite simplicial 

complex. 

Exercise: Let  
1 2,p qLet  be two simplices. Prove that  

1 2

p qK    is a 

finite simplicial complex. 

A barycentric subdivision of a q-simplex  q is a subdivision of this 

simplex on  ( 1)!g   smaller simplices as follows. First let us look at the 

example: 

  

In general, we can proceed by induction. The picture above shows a 

barycentric subdivision of the simplices  1 2,and  . Assume by 
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induction that we have defined a barycentric subdivision of the simplices  

1.j for j q   Now let  x  be a weight center of the simplex  .q We 

already hae a barycentric subdivision of each  ( 1)q

jj the side by q   -

simplices  
(1) ( ),..., , !.n

j j n q   The cones over these simplices,  

0,..., ,j q  with a vertex x constitute a bary centric subdivision of  .q

Now we will prove the following ―Approximation that  ( ) .n i U   

Proof. For each point  x V  there exists a simplex  ( )n x  with a center 

at  ( ) .nx and x U  By compactness of  V there exist a finite number of 

simplices  ( )n

ix  covering V .It remains to use Exercise to conclude that 

a union of finite number of ( )n

ix has a finite triangulation .   

5.2 Back to the Proof of Lemma 5.4. We consider carefully our map  

: qU D  .First we construct the disks  
1 2 3 4, , ,d d d d  inside the disk  d  

with the same center and of radii  / 5,2 / 4,3 / 5,4 / 5r r r r respectively, 

where  r  is a radius of d . Then we cover  1( )V d  by finite number 

of p-simplexes  ( ), ( ) .p nj suchthat j U   Making, if necessary, a 

barycentric subdivision ( a finite number of times) of these simplices, we 

can assume that each simplex  p  has a diameter  
1( ( )) / 5.pd r Let k  

be a union o fall simplices  q such that the intersection  
4( ) d  is not 

empty. Then 

 4 1( ) ( ) /d U K d    

Now we consider a map  
'

1 4: K d   which coincides with    on all 

vertices of our triangulation, and is linar on each simplex  1.K  The 

maps  1

'|K and   are homotopic, i.e. there is a homotopy  1 1 4: ,K d  , 

such that  1

'

0 1| .K and       
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Exercise. Construct a homotopy  
t  as above. 

Now we construct a map  :
q

U D  ot of maps  
', tand   as follows: 

 

3

'

2

5 ( ) 3 2
3 ( )

( ) ( ) ,

( ) ( ) ( ) ,

( ) \ .r u
u

r

u if u d

u u if u d

if u d d

 

  

 






 
 



 

Here  ( )r u  is a distance from  ( )u  to a center of the disk  

, .5.7.d see Fig  

Now we notice that   is a continuous map, and it coincides with    on  

/ .U V  Further more,the intersection of its image with  

1, 1( ) ,d theset U d is a union of finite number of pieces of p-

dimensional planes, i.e. there is a point  
1 ( ).y d which y U   

Exercise : Let  
1,..., s  be a finite number of p-dimensional planes in  

, .qR where p q  Prove that the union  
1 ... s  does cover any open 

subset  .nR  

Thus Cellular Approximation Theorem proved. 

First applications of Cellular Approximation Theorem. We start with the 

following important result. 

Theorem : Let  X bea CW -complex with only one zero-cell and without 

q-cells for  0 ,q n and Y  be a  CW -complex of dimension  

( ), . . , .kn i e Y Y wherek n   Then any map  Y X is homotopic to a 
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constant map. The same statement holds for ―pointed‖spaces and 

―pointed‖ maps. 

Remark. For each pointed space  
0( , )X x  define  0( , ) [ , ]k

k X x S X   

(where we consider homotpy classes of maps  0 0: ( , )) ( , )).kf S s X x  

Very soon we will learn a lot about  
0( , ),k X x  in particular, that there is 

a natural group structure on 
0( , )k X x which are called homotopy group s 

of  .X  

The following statement is a particular case of Theorem 5.9: 

Corollary: The homotopy groups  ( )n

k S are trivial for  1 .k n   

We call a space  X n  connected if it is path-connected and  

( ) 0 1,..., .k X for k n    

Exercise : Prove that a space X  is 0-connected if and only if it is path-

connected. 

Check your progress : 

1. Prove: A pair  complexes is a Borsuk pair. 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

2. Prove: Let be a  -complex and  be its contractible sub 

complex. Then   is homotopy equivalent to the complex   

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

3. Prove: Let  be a continuous map of -complexes, 

such that a restriction   is a cellular map on a  -sub complex  

Then there exists a cell map   such that  

and, moreover,   

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

( , )X A of CW 

X CW A X

X / .X A

:f X Y CW

/f A CW

.A X :g X Y / /A Ag F

.fg g rel A
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5.4 LET US SUM UP 
 

1. A pair  ( , )X A of CW  complexes is a Borsuk pair 

2. Let X be a  CW -complex and  A X be its contractible sub 

complex. Then  X  is homotopy equivalent to the complex  / .X A  

3. Any continuous map   :f X Y of CW -complexes is homotopic to 

a cellular map. 

4. Let  :f X Y be a continuous map of CW -complexes, such that a 

restriction   /f A is a cellular map on a  CW -sub complex  .A X Then 

there exists a cell map  :g X Y  such that  / /A Ag F and, moreover,  

.fg g rel A  

5. A finite triangulation of a subset  nX R is a finite  covering of  X  

by simplices   ( )n i  such that each intersection  ( ) ( )n ni j   either 

empty, or  

 
1( ) ( ) ( )n n n

ki j i   
 For some  0,..., .k n  

6. The homotopy groups  ( )n

k S are trivial for  1 .k n   

We call a space  X n  connected if it is path-connected and  

( ) 0 1,..., .k X for k n    

5.5 KEY WORDS 
 

Borsuk pair 

Borsuk‘s theorem 

Simplicial complexes 

Definitions of the CW-Complexes 

CW-Structure 

Homotopy 

Cellular approximation theorem 
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5.6 QUESTIONS FOR REVIEW 
 

1. Explain about Borsuk‘s extention of homotopy 

2. Explain about Cellular approximation theorem. 

3. Explain about CW-Complex and homotopy 
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New York-Berlin 1981. 
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5.8 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. See section 5.3 

2. See section 5.3 

3. See section 5.3 

4. See section 5.3 
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UNIT- 6 INTRODUCTION TO 

SHEAVES AND THEIR 

COHOMOLOGY 

 

STRUCTURE 

6.0 Objective 

6.1 Introduction 

6.2 Definitions 

6.3 Direct and inverse images of preserves and sheaves 

6.4 Cohomology of sheaves 

6.4.1 Cesh Cohomology 

6.4.2 Fine sheaves 

6.4.3 Long exact sequences in cech Cohomology 

6.5 Good covers 

6.6 Comparisons with other cohomologies 

6.7 Sheaf Cohomology 

6.8 Let us sum up 

6.9 Key words 

6.10 Questions for Review 

6.11 Suggestive readings and references 

6.12 Answers to check your progress 

6.0 OBJECTIVE 
 

In this unit we will learn and understand about definitions of 

Cohomology, Direct and inverse images of pre sheaves and sheaves, 

Cohomology of sheaves, Comparison with other Cohomologies, Sheaf 

Cohomology. 
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6.1 INTRODUCTION 
 

In mathematics, specifically in homology theory and algebraic 

topology, cohomology is a general term for a sequence of abelian 

groups associated to a topological space, often defined from a cochain 

complex. Cohomology can be viewed as a method of assigning richer 

algebraic invariants to a space than homology. Some versions of 

cohomology arise by dualizing the construction of homology. In other 

words, cochains are functions on the group of chains in homology 

theory. 

From its beginning in topology, this idea became a dominant method in 

the mathematics of the second half of the twentieth century. From the 

initial idea of homology as a method of constructing algebraic invariants 

of topological spaces, the range of applications of homology and 

cohomology theories has spread throughout geometry and algebra. The 

terminology tends to hide the fact that cohomology, 

a contravariant theory, is more natural than homology in many 

applications. At a basic level, this has to do with functions 

and pullbacks in geometric situations: given spaces X and Y, and some 

kind of function F on Y, for any mapping f : X → Y, composition 

with f gives rise to a function F ∘ f on X. The most important 

cohomology theories have a product, the cup product, which gives them 

a ring structure. Because of this feature, cohomology is usually a 

stronger invariant than homology. 

 

6.2 DEFINITIONS 

 

Let X be a topological space. 

DEFINITION 6.1. A pre sheaf of Abelian groups on X is a rule
1
 P which 

assigns an Abelian group P(U) to each open subset U of X and a 

morphism (called restriction map)    , :U V P U P V  to each pair 

V U  of open subsets, so as to verify the following requirements: 

(1)    0 0 ;P    
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(2) ,U V  is the identity map; 

(3) if W V U   are open sets, then , , , .U W V W U V    

The elements  s P U  are called sections of the presheaf P on U. If 

 s P U  is a section of P on U and ,V U  we shall write 
V
s  instead 

of  , .U V s  The restriction 
U
P  of P to an open subset U is defined in 

the obvious way. 

Presheaves of rings are defined in the same way, by requiring that the 

restriction maps are ring morphisms. If R is a presheaf of rings on X, a 

presheaf M of Abelian groups on X is called a presheaf of modules over 

R (or an R-module) if, for each open subset U, M(U) is an R(U)-module 

and for each pair ,V U  the restriction map    , :U V M U M V   is 

a morphism of R (U)-modules (where M (V) is regarded as an R(U)-

module via the restriction morphism    R U R V ). The definitions 

in this Section are stated for the case of presheaves of Abelian groups, 

but analogous definitions and properties hold for presheaves of rings and 

modules. 

Definition 6.2. A morphism :f P Q  of presheaves over X is a family 

of morphisms of Abelian groups    :Uf P U Q U  for each open 

,U X  commuting with the rather native terminology can be made 

more precise by saying that a presheaf on X is a contravariant factor 

from the category XO  of open subsets of X to the category of Abelian 

groups. XO  is defined as the category whose objects are the open subsets 

of X while the morphisms are the inclusions of open sets. 

restriction morphisms; i.e., the following diagram commutes: 

   

   

,,

fU

fV

P U Q U

U VU V

P V Q V





 



 

Definition 6.3. The stalk of a presheaf P at a point x X  is the Abelian 

group 

 limx
U

P P U  
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where U ranges over all open neighbourhoods of x, directed by inclusion. 

Remark 6.4. We recall here the notion of direct limit. A directed set I is a 

partially ordered set such that for each pair of elements ,i j I  there is a 

third element k such that i k  and j k . If I is a directed set, a 

directed system of Abelian groups is a family  i i I
G


 of Abelian groups, 

such that for all i j  there is a group morphism : ,ij i jf G G  with 

iif id  and .ii jk jk ikf f f f   On the set ,ii I
B G


  where 

denotes disjoint union, we put the following equivalence relation: 

,g h  with 
ig G  and jh G , if there exists a k I  such that 

   .
JKikf g f h  The direct limit l  of the system   ,i i I

G


 denoted 

lim ,i I il G  is the quotient /B . Heuristically, two elements in B  

represent the same element in the direct limit if they are `eventually 

equal.' From this definition one naturally obtains the existence of 

canonical morphisms iG l . The following discussion should make 

this notion clearer; for more detail, the reader may consult [13].  

If x U  and  s P U , the image xs  of s in xP via the canonical 

projection   xP U P  (see footnote) is called the germ of s at x. From 

the very definition of direct limit we see that two elements 

   ', , ,s P U s P V U V   being open neighbourhoods of x, define the 

same germ at x, i.e. 
' ,x xs s  if and only if there exists an open 

neighbourhood W U V   of x such that s and 's  coincide on 

' .
,

W s W
W s


 

Definition 6.5. A sheaf on a topological space X is a presheaf F on X 

which fulfils the following axioms for any open subset U of X and any 

cover  iU  of U. 

S1) If two sections    ,s F U s F U   coincide when restricted to 

any , ,
i i

i U sU
U s


 they are equal, .s s  
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S2) Given sections  i is F U  which coincide on the intersections, 

i j j i ji U U s U U
s

  
 for every i, j, there exists a section  s F u  whose 

restriction to each iU  equals ,is  i.e. .
i iU s

s


 

Thus, roughly speaking, sheaves are presheaves defined by local 

conditions. The stalk of a sheaf is defined as in the case of a presheaf. 

Example 6.6. If F is a sheaf, and  0xF   for all ,x X then F is the 

zero sheaf,    0F U   for all open sets U X . Indeed, if  s F U , 

since 0xs   for all x U , there is for each x U  an open 

neighbourhood xU  such that 0
xU

s  . The first sheaf axiom then 

implies 0s  . This is not true for a presheaf, cf. Example 6.15 below. 

A morphism of sheaves is just a morphism of presheaves. If :f F G  

is a morphism of sheaves on X, for every x U  the morphism f induces 

a morphism between the stalks, :x x xf F G , in the following way: 

since the stalk xF  is the direct limit of the groups  F U  over all open U 

containing x, any xg F  is of the form xg s  for some open U x  

and some  s F U ; then set      .x U x
f g f s  

A sequence of morphisms of sheaves
'0 0F F F      is exact if 

for every point x X , the sequence of morphisms between the stalks 

'0 0x x xF F F      is exact. If 
'0 0F F F      is an 

exact sequence of sheaves, for every open subset U X  the sequence 

of groups      '0 F U F U F U     is exact, but the last arrow 

may fail to be surjective. Instances of this situation are shown in 

Examples 6.11 and 6.12 below. 

Exercise 6.7. Let 
'0 0F F F      be an exact sequence of 

sheaves. Show that 
'0 F F F     is an exact sequence of 

presheaves. 

Example 6.8. Let G be an Abelian group. Defining  P U G for every 

open subset U and taking the identity maps as restriction morphisms, we 

obtain a presheaf, called the constant presheaf XG . All stalks  X
x

G  of 

XG  are isomorphic to the group G. The presheaf XG  is not a sheaf: if 
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1V  and 
2V  are disjoint open subsets of X, and 

1 2U V V  , the sections

   1 1 2 2, ,x xg G V G g G V G     with 
1 2,g g  satisfy the 

hypothesis of the second sheaf axiom S2) (since 
1 2V V    there is 

nothing to satisfy), but there is no section  Xg G U G   which 

restricts to 1g  on 1V  and to 
2g  on 

2V . 

Example 6.9. Let  XC U  be the ring of real-valued continuous functions 

on an open set U of X. Then XC  is a sheaf (with the obvious restriction 

morphisms), the sheaf of continuous functions on X. The stalk

 x X x
C C  at x is the ring of germs of continuous functions at x. 

Example 6.10. In the same way one can define the following sheaves: 

The sheaf XC
  of differentiable functions on a differentiable manifold X. 

The sheaves p

X  of differential p-forms, and all the sheaves of tensor 

fields on a differentiable manifold X. 

The sheaf of holomorphic functions on a complex manifold and the 

sheaves of holomorphic p-forms on it. 

The sheaves of forms of type  ,p q  on a complex manifold X. 

Example 6.11. Let X be a differentiable manifold, and let : X Xd     

be the exterior differential. We can define the presheaves p

XZ  of closed 

differential p-forms, and p

XB  of exact p-differential forms, 

    | 0 ,p p

X XZ U w U dw    

      | .p p p

X X XB U w U w d for some U      

p

XZ  is a sheaf, since the condition of being closed is local: a differential 

form is closed if and only if it is closed in a neighbourhood of each point 

of X. On the contrary, p

XB  is not a sheaf. In fact, if  2X R , the presheaf 

1

XB  of exact differential 1-forms does not fulfill the second sheaf axiom: 

consider the form 

2 2

xdy ydx
w

x y





 

defined on the open subset   0,0 .U X   Since w  is closed on U, 

there is an open cover  iU  of U by open subsets where w  is an exact 
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form,  1

| iU X iw B U  (this is Poincare's lemma). But w  is not an exact 

form on U because its integral along the unit circle is different from 0. 

This means that, while the sequence of sheaf morphisms 

   10 0d

X XR C Z  is exact (Poincare lemma), the morphism 

   1d

X XC U Z U   may fail to be surjective. 

Example 6.12. Let X be a complex manifold, R the constant sheaf with 

stalk the integers, O the sheaf of holomorphic functions on X, and *O  

the sheaf of nowhere vanishing holomorphic functions. In analogy with 

the exact sequence (1.1) we may consider the sequence 

(6.1)         exp *0 1R O O  

This is an exact sequence of sheaves, in particular exp:  *R R is 

surjective as a map of sheaves, since in a neighbourhood of every point, 

an inverse my be found by applying the logarithm function. However, 

since the latter is multi-valued, surjectivity fails on non-simply connected 

open sets. See Example 6.11. 

1.1. Etale space. We wish now to describe how, given a presheaf, one 

can naturally associate with it a sheaf having the same stalks. As a first 

step we consider the case of a constant presheaf XG  on a topological 

space X, where G is an Abelian group. We can define another presheaf 

XG  on X by putting  XG U  = {locally constant functions :f U G

},
2
 where  XG U G  is included as the constant functions. It is clear 

that  X xx
G G G   at each point x X  and that XG  is a sheaf, 

called the constant sheaf with stalk G. Notice that the functions 

:f U G  are the sections of the projection : xx X
G X


  and 

the locally constant functions correspond to those sections which locally 

coincide with the sections produced by the elements of G. 

Now, let P be an arbitrary presheaf on X. Consider the disjoint union of 

the stalks xx X
P P


  and the natural projection :P X  . The 

sections  s P U  of the presheaf P on an open subset U produce 

sections :s U P  of  , defined by   ,xs x s  and we can define a 

new presheaf *P  by taking  *P U  as the group of those sections 
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:U P   of   such that for every point x U  there is an open 

neighbourhood V U  of x which satisfies |V s   for some  s P V

That is, *P  is the presheaf of all sections that locally coincide with 

sections of P. It can be described in another way by the following 

construction. 

Definition 6.13. The set P , endowed with the topology whose base of 

open subsets consists of the sets  s U  for U open in X and  s P U , 

is called the etale space of the presheaf P. 

Exercise 6.14. (1) Show that :P X   is a local homeomorphism, i.e., 

every point u P  has an open neighbourhood U such that 

 :U U   is a homeomorphism. 

(2) Show that for every open set U X  and every  s P U , the 

section :s U P  is continuous. 

(3) Prove that *P  is the sheaf of continuous sections of :P X  . 

(4) Prove that for all x X  the stalks of P and *P  at x are isomorphic. 

(5) Show that there is a presheaf morphism *: .P P   

(6) Show that   is an isomorphism if and only if P is a sheaf.  

*P  is called the sheaf associated with the presheaf P. In general, the 

morphism *: P P   is neither injective nor surjective: for instance, 

the morphism between the constant presheaf XG  and its associated sheaf 

XG  is injective but nor surjective. 

Example 6.15. As a second example we study the sheaf associated with 

the presheaf k

XB  of exact k-forms on a differentiable manifold X. For 

any open set U we have an exact sequence of Abelian groups (actually of 

R -vector spaces)  

     0 0k k k

X X XB U Z U H U     

where k

XH  is the presheaf that with any open set U associates its k-th de 

Rham cohomology group,    k k

X DRH U H U . Now, the open 

neighbourhoods of any point x X  which are diffeomorphic to nR  

(where n = dim X) are cofinal
3
 in the family of all open neighbourhoods 

of x, so that   0k

X x
H   by the Poincare lemma. In accordance with  
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Example 6.6 this means that  
*

0,k

XH   which is tantamount to

 
*

.k k

X XB R Z  

In this case the natural morhism  
*

k k

X XH H  is of course surjective 

but not injective. On the other hand,  
*

k k k

X X XB B Z   is injective but 

not surjective.  

3
Let I be a directed set. A subset J of I is said to be cofinal if for any 

i I  there is a j J  such that i j . By the definition of direct limit 

we see that, given a directed family of Abelian groups   ,i i I
G


 if 

 j j J
G


 is the subfamily indexed by J, then 

 
lim lim ;i j
i I J J
GR G  

that is, direct limits can be taken over cofinal subsets of the index set. 

Definition 6.16. Given a sheaf F on a topological space X and a subset 

(not necessarily open) S X , the sections of the sheaf F on S are the 

continuous sections :S F   of :F X  . The group of such 

sections is denoted by  , .S F  

Definition 6.17. Let P, Q be presheaves on a topological space X. 
4
 

(1) The direct sum of P and Q is the presheaf P Q  given, for every 

open subset U X , by        P Q U P U Q U    with the 

obvious restriction morphisms. 

(2) For any open set U X , let us denote by Hom  | |,U UP Q the space 

of morphisms between the restricted presheaves |UP  and |UQ ; this is an 

Abelian group in a natural manner. The presheaf of homomorphisms is 

the presheaf Hom  ,P Q  given by Hom    ,P Q U   Hom  | |,U UP Q  

the natural restriction morphisms. 

(6) The tensor product of P and Q is the presheaf

       P Q U P U Q U    

If F and G are sheaves, then the presheaves F G  and  ,Hom F G  are 

sheaves. On the contrary, the tensor product of F and G previously 

defined may not be a sheaf. Indeed one defines the tensor product of the 

sheaves F and G as the sheaf associated with the presheaf 
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   U F U G U  .  It should be noticed that in general 

        , / ,Hom F G U Hom F U G U and 

   , / , .x xx
Hom F G Hom F G  

6.3 DIRECT AND INVERSE IMAGES OF 

PRE SHEAVES AND SHEAVES 
 

Here we study the behaviour of presheaves and sheaves under change of 

base space. Let :f X Y  be a continuous map. 

Definition 6.18. The direct image by f of a presheaf P on X is the 

presheaf *f P  on Y defined by       1

*f P V P f V  for every open 

subsetV Y . If F is a sheaf on X, then *f F  turns out to be a sheaf. 

Let P be a presheaf on Y. 

Definition 6.19. The inverse image of P by f is the presheaf on X defined 

by 

 
 

1

lim
U f V

U P V


 . 

The inverse image sheaf of a sheaf F on Y is the sheaf 1f F  associated 

with the inverse image presheaf of F. 

The stalk of the inverse image presheaf at a point x X  is isomorphic 

to  .f x
P  It follows that if 

'0 0F F F      is an exact sequence 

of sheaves on Y , the induced sequence 

1 ' 1 10 0f F f F f F        

4
Since we are dealing with Abelian groups, i.e. with -modules, the 

Hom modules and tensor products are taken over . of sheaves on X, is 

also exact (that is, the inverse image factor for sheaves of Abelian groups 

is exact). 

The etale space 
1f F

 of the inverse image sheaf is the fibred product 

5

XY F . It follows easily that the inverse image of the constant sheaf 

XG  on X with stalk G is the constant sheaf YG  with stalk 

1, X YG f G G  . 
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6.4 COHOMOLOGY OF SHEAVES 
 

We wish now to describe a cohomology theory which associates 

cohomology groups to a sheaf on a topological space X. 

6.4.1. Cech cohomology.  
We start by considering a presheaf P on X and an open cover U of X. We 

assume that U is labelled by a totally ordered set I, and define 

0 0..... .... .
p pi i i iU U U    

We define the Cech complex of U with coefficients in P as the complex 

whose p-th term is the Abelian group 

   
0

0

......

......

, .
p

p

p

i i

i i

C U P P U
 

   

Thus a p-cochain   is a collection  
0 .... pi i  of sections of P, each one 

belonging to the space of sections over the intersection of 1p   open 

sets in U. Since the indexes of the open sets are taken in strictly 

increasing order, each intersection is counted only once. 

The Cech differential    1: , ,p pC U P C U P   is defined as 

follows: if    
0 ......

,
p

p

i i C U P   , then 

    
0 1 ....0 1 0 1

1

ˆ....... ..... |.....
0

1
k p i ip p

p
k

i i i Ui i
k

 
 





   

Here a caret denotes omission of the index. For instance, if 0p   we 

have  i   and 

(6.2)       .k i k i i kik
U U U U       

It is an easy exercise to check that 
2 0  . Thus we obtain a 

cohomology theory. We denote the corresponding cohomology groups 

by  ,kH U P . 

Lemma 6.1. If F is a sheaf, one has an isomorphism    0 ,H U F F X  

Proof. We have  0 ,H U F   ker    0 1: , ,C U P C U P  . So if 

 0 ,H U F   by 

(6.2) we see that 
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| | .
i k i kkU U iU U    

By the second sheaf axiom this implies that there is a global section 

 F X   such that | .
iU i   This yields a morphism 

   0 , ,H U F F X  which is evidently surjective and is injective 

because of the first sheaf axiom.  

Example 6.2. We consider an open cover U of the circle 1S  formed by 

three sets which intersect only pairwise. We compute the Cech 

cohomology of U with coefficients in the constant sheaf R We have 

         0 1, , , , 0kC U R C U R R R R C U R  for 1k   because 

there are no triple intersections. The only nonzero differential 

   0 1

0 : , ,d C U R C U R is given by 

   0 0 1 2 1 2 2 0 0 1, , , , .d x x x x x x x x x     

Hence 

  0

0, kerH U R d R  

   1 1

0, , /ImH U R C U R d R . 

It is possible to define Cech cohomology groups depending only on the 

pair  , ,X F  and not on a cover, by letting 

   

.

, lim ,k k

u

H X F H U F



 

The direct limit is taken over a cofinal subset of the directed set of all 

covers of X (the order is of course the refinement of covers: a cover 

 j j J
U V


  is a refinement of U if there is a map :f I J  such that 

  if i
V U  for every i I ). The order must be fixed at the outset, since a 

cover may be regarded as a refinement of another in many ways. 

As different cofinal families give rise to the same inductive limit, the 

groups  ,kH X F  are well defined. 

6.4.2 Fine sheaves: 
Cech cohomology is well-behaved when the base space X is 

paracompact. (It is indeed the bad behaviour of Cech cohomology on 

non-paracompact spaces which motivated the introduction of another 



Notes 

114 

cohomology theory for sheaves, usually called sheaf cohomology; cf. 

[6].) In this and in the following sections we consider some properties of 

Cech cohomology that hold in that case. 

Definition 6.3. A sheaf of rings R on a topological space X is fine if, for 

any locally finite coper cover  i i I
U U


  of 6X , there is a family 

 i i I
s


 of global sections of R such that: 

(1)  1;i I is   

(2) for every i I  there is a closed subset i iS U  such that   0i x
s   

whenever .ix S  

6
We recall that an oper cover U is locally finite if every point in X has an 

open neighbourhood which intersects only a finite number of elements of 

U. It is possible to show that whenever X is paracompact, any open cover 

has a locally finite refinement [17]. 

The family  is  is called a partition of unity subordinated to the cover 

U. For instance, the sheaf of continuous functions on a paracompact 

topological space as well as the sheaf of smooth functions on a 

differentiable manifold are fine, while sheaves of complex or real 

analytic functions are not. 

Definition 6.4. A sheaf F of Abelian groups on a topological space X is 

said to be acyclic if  , 0kH X F   for 0k  . 

Proposition 6.5. Let R be a _ne sheaf of rings on a paracompact space X. 

Every sheaf M of R-modules is acyclic. 

Proof. Let  i i I
U U


  be a locally finite open cover of X, and let  ip  

be a partition of unity of R subordinated to U. For any  ,qC U M   

with 0q   we set 

 
0 1 0 1 10 1

0 0 1

....... ............
.......

q qq
j ji i j i ji ii i

j I j I
j i i j i

K p q p a
 

 
  

     

 
0 1 1

1

....... ......

0

1 .
k k q

k k

q
k

j i i ji i

k j I
i j i

p a
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This defines a morphism    1ˆ ˆ: , ,k kK C U M C U M  such that 

K K id    (i.e., K is a homotopy operator); then K    if 

0,   so that  , 0kH U M   for 0k  . 

Since on a paracompact space the locally finite open covers are cofinal in 

the family of all covers, we can take direct limit on such covers, thus 

getting  , 0kH X M   for 0k  . 

Example 6.6. Using this result we may recast the proof of the exactness 

of the Mayer-Vietoris sequence for de Rham cohomology in a slightly 

different form. Given a differentiable manifold X, let U be the open 

cover formed by two sets U and V . Since  2 , 0kC U     (there are no 

triple intersections) we have an exact sequence 

     02 0 10 , , , 0.k k kH U C U C U        

which in principle is exact everywhere but at  1 , kC U  . However since 

the sheaves k are acyclic by Proposition 6.5, one has  1 , kH U  , 

which means that   is surjective, and the sequence is exact at that place 

as well. We have the identifications 

           0 0 1, , , , ,k k k k k k kH U X C U U V C U U V           

so that we obtain the exactness of the Mayer-Vietoris sequence. 

6.4.3. Long exact sequences in Cech Cohomology 
We wish to show that when X is paracompact, any exact sequence of 

sheaves induces a corresponding long exact sequence in Cech 

cohomology. 

Lemma 6.7. Let X be any topological space, and let 

(6.3)     
'0 0P P P      

be an exact sequence of presheaves on X. Then one has a long exact 

sequence 

       0 ' 0 0 1 '0 , , , , .......H X P H X P H X P H X P      

       ' 1 ', , , , .......k k k kH X P H X P H X P H X P      

Proof. For any open cover U the exact sequence (6.3) induces an exact 

sequence of differential complexes 
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     '0 , , , 0C U P C U P C U P        

which induces the long cohomology sequence 

       0 ' 0 0 1 '0 , , , , .......H U P H U P H U P H U P      

       ' 1 ', , , , .......k k k kH U P H U P H U P H U P      

Since the direct limit of a family of exact sequences yields an exact 

sequence, by taking the direct limit over the open covers of X one 

obtains the required exact sequence.  

LEMMA 6.8. Let X be a paracompact topological space, P a presheaf on 

X whose associated sheaf is the zero sheaf, let U be an open cover of X, 

and let  , .kC U P   There is a refinement W of U such that 

  0,    where    : , ,k kC U P C W P   is the morphism induced 

by restriction. 

PROOF. We shall need to use the following fact [5, ?]: given an open 

cover  i i I
U U


  of a paracompact space X,

7
 there is an open cover 

 i i I
U v


  having the same cardinality of U, such that .i iV U  

PROPOSITION 6.9. Let P be a presheaf on a paracompact space X, and 

let *P  be the associated sheaf. For all 0k  , the natural morphism 

   *, ,k kH X P H X P  is an isomorphism. 

PROOF. One has an exact sequence of presheaves 

*

1 20 0Q P P Q      

with 

(6.4)    
* *

1 2 0.Q Q   

This gives rise to 

(6.5)   

 
*

1 20 0, 0 0Q P T T P Q         

7
It is enough that X is normal, however, any paracompact space is 

normal [17]. 

 

Where T is the quotient presheaf 1/P Q ,  i.e. the presheaf

   1/U P U Q U . By Lemma 6.8 the isomorphisms (6.4) yield 
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   1 2, , 0.k kH X Q H X Q   Then by taking the long exact sequences 

of cohomology from the exact sequences (6.5) we obtain the desired 

isomorphism.  

Using these results we may eventually prove that on paracompact spaces 

one has long exact sequences in Cech cohomology. 

THEOREM 6.10. Let 

'0 '' 0F F F     

be an exact sequence of sheaves on a paracompact space X. There is a 

long exact sequence of Cech cohomology groups 

       0 ' 0 0 1 '0 , , , , .......H X F H X F H X F H X F      

       ' 1 ', , , , .......k k k kH X F H X F H X F H X F      

PROOF. Let P be the quotient presheaf '/F F ; then * .P F   One has an 

exact sequence of presheaves 

'0 0F F P     

By taking the associated long exact sequence in cohomology (cf. Lemma 

6.7) and using the isomorphism    , ,k kH X P H X F   one obtains 

the required exact sequence.  

Example 6.11. The long exact sequence in cohomology associated with 

the exact sequence (6.1) starts with 

       0 0 0 * 10 , , , U, .......H U H U O H U O H      

This shows that the obstruction to the sequence (6.1) to be exact as a 

sequence of presheaves is the first cohomology group with coefficients in 

Z. Since X, being a manifold, is paracompact and locally Euclidean , the 

Cech cohomology of  coincides with the singular cohomology (see 

Proposition 6.29); therefore the above mentioned obstruction is the non-

simply connectedness of U. 

Abstract de Rham theorem. We describe now a very useful way of 

computing cohomology groups; this result is sometimes called ―abstract 

de Rham theorem." As a particular case it yields one form of the so-

called de Rham theorem, which states that the de Rham cohomology of a 

differentiable manifold and the Cech cohomology of the constant sheaf 

 are isomorphic. 
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DEFINITION 6.12. Let F be a sheaf of abelian groups on X. A resolution 

of F is a collection of sheaves of abelian groups  k
k

L


 with morphisms 

0 1: , : k k

ki F L d L L    such that the sequence 

0 10 10 .......d diF L L     

is exact. If the sheaves L are acyclic (fine) the resolution is said to be 

acyclic (fine). 

LEMMA 6.13. If 0 F L   is a resolution, the morphism 

   0:Xi F X L X  is injective. 

Proof. Let Q be the quotient 0 /L F .  Then the sequence of sheaves 

00 0F L Q     

is exact. By Exercise 6.7, the sequence of abelian groups 

     00 F X L X Q X    

is exact. This implies the claim.  

However the sequence of abelian groups 

   0 10 10 ........d dL X L X    

is not exact. We shall consider its cohomology   , .H L X d   By the 

previous Lemma we have     0 0, , .H L X d RH X F  

THEOREM 6.14. If 0 F L   is an acyclic resolution there is an 

isomorphism     , ,k kH X F RH L X d for all 0k  . 

Proof. Define 
1ker : .k k k

kQ d L L    The resolution may be split into 

0 1 10 0, 0 0. 1k k k

XF L Q Q L Q k          

Since the sheaves kL  are acyclic by taking the long exact sequences of 

cohomology we obtain a chain of isomorphisms 

     
 
 

 



0

1 1 1 1

0 1

,
, , ...... ,

Im ,

k

k k k

k

H X Q
H X F RH X Q R RH X Q R

H X L
 

By Exercise 6.7    0 , k kH X Q RQ X  is the kernel of 

  1: k k

kd L X L   so that the claim is proved.  

Corollary 6.15. (de Rham theorem.) Let X be a differentiable manifold. 

For all 0k   the cohomology groups  k

DRH X  and  ,kH X R are 

isomorphic. 
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Proof. Let n = dim X. The sequence 

(6.6)   

      0 10 ........ 0d d n

X X XR  

 (where 0

X XC
  ) is exact (this is Poincare's lemma). Moreover the 

sheaves X

  are modules over the fine sheaf of rings XC
 , hence are 

acyclic. The claim then follows for the previous theorem.  

Corollary 6.16. Let U be a subset of a differentiable manifold X which is 

diffeomorphic to nR . Then   , 0kH U R  for 0k  . 

Soft sheaves. For later use we also introduce and study the notion of soft 

sheaf. However, we do not give the proofs of most claims, for which the 

reader is referred to [2, 6, 25]. The contents of this subsection will only 

be used in Section 5.5. 

Definition 6.17. Let F be a sheaf a on a topological space X, and let 

U X  be a closed subset of X. The space  F U  (called ―the space of 

sections of F over U") is defined as 

   lim
V U

F U F V


  

where the direct limit is taken over all open neighbourhoods V of U. 

A consequence of this definition is the existence of a natural restriction 

morphism    .F X F U  

Definition 6.18. A sheaf F is said to be soft if for every closed subset 

U X  the restriction morphism    F X F U  is surjective. 

Proposition 6.19. If 
'0 '' 0F F F     is an exact sequence of 

soft sheaves on a paracompact space X, for every closed subset V X  

the sequence of groups 

     '0 '' 0F V F V F V     

is exact. 

Proof. The proof of Proposition 6.2 can be easily adapted to this 

situation.  

Corollary 6.20. The quotient of two soft sheaves on a paracompact space 

is soft. 
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Proof. If /F F F   is the quotient of two soft sheaves, by Proposition 

6.19 the restriction morphism    F X F V is surjective (where V is 

any closed subset of X), so that    F X F V   is surjective as well.  

Proposition 6.21. Any soft sheaf of rings R on a paracompact space is 

fine. 

Proof. Cf. Lemma II.3.4 in [2].  

Proposition 6.22. Every sheaf F on a paracompact space admits soft 

resolutions. 

Proof. Let  0S F  be the sheaf of discontinuous sections of F (i.e., the 

sheaf of all sections of the sheaf space F). The sheaf  0S F  is obviously 

soft. Now we have an exact sequence  0

10 0F S F F    . The 

sheaf 1F  is not soft in general, but it may embedded into the soft sheaf 

 0

1S F , and we have an exact sequence  0

1 1 20 0.F S F F     

Upon iteration we have exact sequences 

 1 10 0k ki pk

kF S F F      

where    0 .k

kS F S F . One can check that the sequence of sheaves 

   0 10 10 .......f fF S F S F     

(where 
1k k kf i p ) is exact.   

Proposition 6.23. If F is a sheaf on a paracompact space, the sheaf 

 0S F  is acyclic. 

Proof. The endomorphism sheaf End   0S F  is soft, hence fine by 

Proposition 

6.21. Since  0S F  is an End   0S F -module, it is acyclic.
8
  

Proposition 6.24. On a paracompact space soft sheaves are acyclic. 

Proof. If F is a soft sheaf, the sequence 

     0

10 0F X S F X F X    obtained from 

0

10 0F S F F     is exact (Proposition 6.19). Since F and 

0S F  are soft, so is 1F  by Corollary 6.20, and the sequence 

     1

1 20 0F X S F X F X     is also exact. With this 
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procedure we can show that the complex    S F X
is exact. But since 

all sheaves  S F
 are acyclic by the previous Proposition, by the 

abstract de Rham theorem the claim is proved.  

Note that in this way we have shown that for any sheaf F on a 

paracompact space there is a canonical soft resolution. 

Leray's theorem for Cech cohomology. If an open cover U of a 

topological space X is suitably chosen, the Cech cohomologies 

 ,H U F
and  ,H X F

 are isomorphic. Leray's theorem establishes a 

sufficient condition for such an isomorphism to hold. Since the 

cohomology  ,H U F
 is in generally much easier to compute, this 

turns out to be a very useful tool in the computation of Cech cohomology 

groups. 

We say that an open cover  i i I
U U


  of a topological space X is 

acyclic for a sheaf F if   
0 .....

, 0
p

k

i iH U F   for all 0k   and all non 

void intersections 
0 0..... 0...... , ..... .

pi i i ip pU U k U i i I     

Theorem 6.25. (Leray's theorem) Let F be a sheaf on a paracompact 

space X, and let U be an open cover of X which is acyclic for F and is 

indexed by an ordered set. Then, for all 0k  , the cohomology groups 

 ,kH U F  and  ,kH X F  are isomorphic. 

To prove this theorem we need to construct the so-called Cech sheaf 

complex. For every nonvoid intersection 
0 ...... pi iU  let 

0 0...... ......:
p pi i i iJ U X  be the inclusion. For every p define the sheaf 

(6.7)     

    
0 .....0

0

..... |
*

.......

,
p i ip

p

p

i i U

i i

C U F j F
 

   

(every factor  
0 ......0
..... |

*p i ip
i i Uj F  is the sheaf F first restricted to 

0 ...... pi iU  

and the extended by zero to the whole of X). The Cech differential 

induces sheaf morphisms    1: , , .p pC U F C U F   From the 

definition, we get isomorphisms 

(6.8)        , , .p pC U F X C U F  
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8
We are cheating a little bit, since the sheaf of rings End   0S F  is not 

commutative. However a closer inspection of the proof would show that 

it works anyways.  

i.e., by taking global sections of the Cech sheaf complex we get the Cech 

cochain group complex. Moreover we have: 

Lemma 6.26. For all p and k, 

    
0

0

.....

.......

, , , .
p

p

k p k

i i

i i

H X C U F H U F
 

  

Proof. By the definition of the Cech cohomology groups we have 

     , , lim , , .k p k p

U

H X C U F H U C U F  

where U runs over all open covers of X. The groups   , ,k pH X C U F  

are the cohomology of the complex   , ,pC U C U F
, which may be 

written as 

      
0

0

.......

.....

, , ,
k

k

k p p

l i

l l

C U C U F C U F V
 

   

 
   

  0 0

0 0

....... .....

..... .....
k p

k p

l l i i

l l l l

F V U  

 0 ......0
..... |,k i ip

k

i i UC U F  

Where 
0 ..... pi iU  is the restriction of the cover U to 

0 ..... pi iU  . This implies 

the claim.  

We may now prove Leray's theorem. As an immediate consequence of 

the fact that F fulfils the sheaf axioms, the complex  ,C U F
 is a 

resolution of F. Under the hypothesis of Leray's theorem, by Lemma 6.26 

this resolution is acyclic. By the abstract de Rham theorem, the 

cohomology of the global sections of the resolution is isomorphic to the 

cohomology of F. But, due to the isomorphisms (6.8), the cohomology of 

the global sections of the resolution is the cohomology  ,H U F
. 

6.5 GOOD COVERS 
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By means of Leray's theorem we may reduce the problem of computing 

the Cech cohomology of a differentiable manifold with coefficients in 

the constant sheaf  (which, via de Rham theorem, amounts to 

computing its de Rham cohomology) to the computation of the 

cohomology of a cover with coefficients in R; thus a problem which in 

principle would need the solution of differential equations on 

topologically nontrivial manifolds is reduced to a simpler problem which 

only involves 

the intersection pattern of the open sets of a cover. 

Definition 6.27. A locally finite open cover U of a differentiable 

manifold is good if all nonempty intersections of its members are 

diffeomorphic to n . 

Good covers exist on any differentiable manifold (cf. [19]). Due to 

Corollary 6.16, good covers are acyclic for the constant sheaf . We 

have therefore 

Proposition 6.28. For any good cover U of a differentiable manifold X 

one has isomorphisms 

    , , , 0.k kH U R RH X R k  

The cover of Example 6.2 was good, so we computed there the de Rham 

cohomology of the circle 
1S . 

6.6 COMPARISON WITH OTHER 

COHOMOLOGIES 
 

In algebraic topology one attaches to a topological space X several 

cohomologies with coefficients in an abelian group G. Loosely speaking, 

whenever X is paracompact and locally Euclidean, all these 

cohomologies coincide with the Cech cohomology of X with coefficients 

in the constant sheaf G. In particular, we have the following result: 

Proposition 6.29. Let X be a paracompact locally Euclidean topological 

space, and let G be an abelian group. The singular cohomology of X with 

coefficients in G is isomorphic to the Cech cohomology of X with 

coefficients in the constant sheaf G.  
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6.7 SHEAF COHOMOLOGY 

 

Another kind of sheaves which can be introduced is that of flabby 

sheaves (also called ―flasque"). A sheaf F on a topological space X is 

said to be flabby if for every open subset U X  the restriction 

morphism    F X F U  is surjective. It is easy to prove that flabby 

sheaves are soft: if U X  is a closed subset, by definition of direct 

limit, for every  s F U there is an open neighbourhood V of U and a 

section  's F V which restricts to s. Since F is flabby, 's  can be 

extended to the whole of X. So on a paracompact space, flabby sheaves 

are acyclic, and by the abstract de Rham theorem flabby resolution can 

be used to compute cohomology. We should also notice that the 

canonical soft resolution  S F
 we constructed in Section 2.5 is flabby, 

as one can easily check by the definition itself. We shall then call  S F
 

the canonical flabby resolution of the sheaf F (this is also called the Go 

dement resolution of F). 

One can further pursue this line and use flabby resolutions (for instance, 

the canonical flabby resolution) to define cohomology. That is, for every 

sheaf F, its cohomology is by definition the cohomology of the global 

sections of its canonical flabby resolution (it then turns out that 

cohomology can be computed with any acyclic resolution). This has the 

advantage of producing a cohomology theory (called sheaf cohomology) 

which is bell-behaved (e.g., it has long exact sequences in cohomology) 

on every topological space, not just on paracompact ones. In this section 

we briefly outline the basics of this theory; for a more comprehensive 

treatment the reader may refer to [6, 4, 2], or to [23] where a different 

and more general approach to sheaf cohomology (using injective 

resolutions) is pursued; also the original paper by Grothendieck [9] can 

be fruitfully read. It follows from our treatment that on a paracompact 

topological space the sheaf and Cech cohomology coincide, but in 

general they do not. In the next chapter we shall establish the relation 

between the two cohomologies in terms of a spectral sequence (cf. also 
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[12], especially the exercise section, for a discussion of the comparison 

between the two cohomologies). 

Definition 6.1. If F is a sheaf on a topological space X, its sheaf 

cohomology groups are defined as 

      ,i iH X F H S F X  

for 0i   

The following two results are basic for this construction. Here X is any 

topological space. 

Proposition 6.2. If 0 0F F F      is an exact sequence of 

sheaves, with F   flabby, for any open set U X  the sequence of 

abelian groups 

     0 0F U F U F U      

is exact (namely, the sequence is exact as a sequence of presheaves). 

Proof. Let U X  and  s F U  . We need to show the existence of 

 s F U such that  p x s  under the map :p F F  . Let I be the 

set of all pairs (W, s), where W U  is open, and  s F W  represents 

s  on W (i.e.,   |Wp s s ). The set I is nonempty since the morphism p 

is surjective in the sense of sheaves. The set I may be given a partial 

ordering ―by extension", i.e.,    , ,W s W t  if W W   and | .Ws t  

The set has an upper bound (the union of all its elements) and then by 

Zorn's lemma it has a maximal element  ,W s . If \x U W  there is a 

neighbourhood V of x and 

a section  t F V  which represents s  in V . Over the intersection 

V W  the section s t  lies in F   and since F   is flabby it may be 

extended to V . We can then modify t so that s t  in V W , which 

contradicts the fact that  ,W s  is maximal. Then such a x cannot exist, 

and .W U  

Corollary 6.6. The quotient of two flabby sheaves is flabby. 

Proof. If we have the sequence 0 0F F F     , with F   and F 

flabby, we may apply the previous Lemma. If  s F U   there exists 
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 s F U  such that  p s s . Since F is flabby, s extends to a section 

t of F on X, and then  p t  extends s . 

Corollary 6.4. If 

0 10 .....L L    

is an exact sequence of flabby sheaves, for every open set U X  the 

sequence of abelian groups is exact. 

 

   0 10 .....L U L U    

Corollary 6.5. Flabby sheaves are acyclic with respect to sheaf 

cohomology, i.e.,  , 0pH X F   for all 0p   if F is a flabby sheaf. 

Proof. Apply the previous corollary to the canonical flabby resolution of 

F. 

Corollary 6.6. Flabby sheaves are acyclic with respect to Cech 

cohomology, i.e.,  , 0pH U F   for every open cover U of X and for 

all 0p   if F is a flabby sheaf. 

Proof. Since F is flabby, the sheaves  ,pC U F  defined in Eq. (6.7) are 

flabby as well. By Corollary 6.4 the sequence 

       1, , .....pC U F X C U F X    

is exact. Since      , ,p pC U F X C U F , this implies that the Cech 

complex  ,C U F
 is exact.  

As a further consequence, we have the isomorphism between Cech and 

sheaf cohomology on a paracompact space. 

Corollary 6.7. For any sheaf F on a paracompact space X, the Cech 

cohomology  ,H X F
 and the sheaf cohomology  ,H X F

are 

isomorphic. 

Proof. By the previous Corollary, the canonical flabby resolution of F is 

acyclic for the Cech cohomology, so that the abstract de Rham theorem 

implies the claim.  

We want to show that sheaf cohomology is well behaved with respect to 

exact sequences of sheaves on any topological space. Let us denote by 

 / , /Sh X K Sh X  and  K Ab  the categories of sheaves (of abelian 
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groups) on X, of complexes of sheaves on X, and of complexes of 

abelian groups, respectively. The canonical flabby resolution allows one 

to define two functors: 

 1 : / /F Sh X K Sh X  

 F S F
 

 2 : /F Sh X K Ab  

   F S F X
 

Proposition 6.8. The two functors 
1 2,F F  are exact (i.e., they map exact 

sequences to exact sequences).  

Proof. If  

(6.9)     0 0F F F      

is an exact sequence of sheaves we have for every x 2 X an exact 

sequence 

' ''0 0x x x

x H x X x X

F F F
  

       

so that the sequence of complexes of sheaves 

     0 0s F s F s F        

induced by (6.9) is exact. This proves that 1F  is exact. Moreover, by 

Proposition 6.2 the sequence 

(6.10)              0 0s F X s F X s F X        

is exact as well, so that 2F  is exact.  

Corollary 6.9. If 0 0F F F      is an exact sequence 

of sheaves, there is a long exact sequence of cohomology 

(6.11) 

       0 ' 0 0 1 '0 , , , , .......H X F H X F H X F H X F      

       ' 1 ', , , , .......k k k kH X F H X F H X F H X F    

Proof. The long exact sequence of cohomology associated with the exact 

sequence of complexes of abelian groups (6.10) is just the sequence 

(6.11).  

An immediate consequence of this result is that the proof of the abstract 

de Rham theorem for the Cech cohomology on a paracompact space may 

be applied to provide a proof of the same theorem for sheaf cohomology 
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on any space; thus, on any topological space, the sheaf cohomology of a 

sheaf F is isomorphic to the cohomology of the complex of global 

sections of a resolution of F which is acyclic for the sheaf cohomology. 

Check Your Progress 

1. Prove: If  is an acyclic resolution there is an 

isomorphism for all 

.__________________________________________________________

__________________________________________________________

__________________________________________________________ 

2. Explain about Cohomology of sheaves 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

3. Explain about Sheaf Cohomology 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

6.8 LET US SUM UP 

 

A pre sheaf of Abelian groups on X is a rule
1
 P which assigns an Abelian 

group P(U) to each open subset U of X and a morphism (called 

restriction map)    , :U V P U P V  to each pair V U  of open 

subsets, so as to verify the following requirements: 

(1)    0 0 ;P    

(2) ,U V  is the identity map; 

(3) if W V U   are open sets, then , , , .U W V W U V    

Given a sheaf F on a topological space X and a subset (not necessarily 

open) S X , the sections of the sheaf F on S are the continuous 

sections :S F   of :F X  . The group of such sections is 

denoted by  , .S F  

The inverse image of P by f is the presheaf on X defined by 

0 F L 

    , ,k kH X F RH L X d 0k 
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1

lim
U f V

U P V


 . 

The inverse image sheaf of a sheaf F on Y is the sheaf 1f F  associated 

with the inverse image presheaf of F. 

6.9 KEY WORDS 

 

Direct and inverse images of pre sheaves and sheaves 

Cohomology of sheaves 

Sheaf Cohomology 

Fine sheaves 

6.10 QUESTIONS FOR REVIEW 
 

1. Explain about direct and inverse images of pre sheaves and sheaves 

2. Explain about Cohomology of sheaves 

3. Explain about long exact sequences in cesh Cohomology 
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7. M.J. Greenberg,Lectures on Algebraic Topology, Benjamin, New 
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10. P.J.Hilton & U&.Stammbach,A Course in Homological Algebra, 
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Princeton University Press, Princeton 1987. 

13.  W.S.massey,Exact couples in algebraic topology, I,II 

14. E.H.Spanier,Algebraic topology, Corrected repreint, Springer-Verlag, 
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6.12 ANSWERS TO CHECK YOUR 

PROGRESS QUESTIONS 
 

1. See sub section 6.7 

2. See section 6.6 

3. See section 6.7 
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UNIT-7 BORDISM SPECTRA, AND 

GENERALIZED HOMOLOGY 
 

STRUCTURE 

7.0 Objective 

7.1 Introduction 

7.2 Framed bordism and homotopy groups of spheres 

7.3 Suspension and the frudenthal theorem 

7.4 Stable tangential framings 

7.5 Let us sum up 

7.6 Key words 

7.7 Questions for review 

7.8 Suggestive readings and references 

7.9 Answers to check your progress 

7.0 OBJECTIVE 
 

In this unit we will learn understand about Framed bordism and 

homotopy groups of spheres, Suspension and the frudenthal theorem, 

Stable tangential framings. 

 

7.1 INTRODUCTION 
 

This chapter contains a mixture of algebraic and differential topology and 

serves as an introduction to generalized homology theories. We will give 
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a precise definition of a generalized homology theory later, but in the 

mean- time you should think of a generalized homology theory as a 

functor from pairs of spaces to graded abelian groups (or graded R-

modules) satisfying all Eilenberg–Steenrod axioms but the dimension 

axiom. 

The material in this chapter will draw on the basic notions and theo- 

rems of differential topology, and you should re-familiarize yourself 

with the notion of smooth maps between smooth manifolds, sub 

manifolds, tangent bundles, orientation of a vector bundle, the normal 

bundle of a sub manifold, the Sard theorem, transversality and the 

tubular neighborhood theorem. One of the projects for this chapter is to 

prepare a lecture on these topics.     

7.2 FRAMED BORDISM AND HOMOTOPY 

GROUPS OF SPHERES 

Pontrjagin and Thom in the 1950‘s noted that in many situations 

there is a one-to-one correspondence between problems in 

geometric topology (= manifold theory) and problems in 

algebraic topology. Usually the algebraic problem is more 

tractable, and its solution leads to geometric consequences. In 

this section we discuss the quintessential example of 

thiscorrespondence; are ferencei sthelastsect ionof 

Milnor‘sbeautifullittlebo ok[27]. 

We start with an informal discussion of the passage from geometric 

topology to algebraic topology. 

Definition 7.1. A framing of a submanifold k nV  s of a closed manifold 

kM  is a embedding nof V R inM   so that  p,0 p   for all p V.  

If  k 1 nW ,    is a framed submanifold of M I, then the two framed 

submanifolds of M given by intersecting W with    M 0 andM 1 

are framed bordant. Let 
fr

k n,M  be the set of framed bordism classes of 

 k n  dimensional framed submanifolds of M. 
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A framed submanifold defines a collapse map  n nM S R    by 

sending  p,   to   and all points outside the image of 0 is V. A 

framed bordism gives a homotopy of the two collapse maps. A framed 

bordism from a framed submanifold to the empty set is a null-bordism. 

In the special form a framed submanifold k n kV of S ,  a null-bordism is 

given by an extension to a framed submanifold k 1 n k 1W of D .    

Theorem 7.2. The collapse map induces a bijection fr n

k n,M M,S .
      

This method of translating between bordism and homotopy sets is called 

the Pontrjagin-Thom construction. 

Here are some examples (without proof) to help your geometric insight. 

A (framed) point in a kS  gives a map k KS S which generates 

k

KS Z.   Any framed circle is 
2S is null-bordant, for example the 

equator with the obvious framing is the boundary of the 2-disk in the 3-

ball. However, a framed 1 3S inS  so that the circle    1S 1,0   links 

the 
1S  with linking number 1 represents the generator of  23 S Z.   

(Can you reinterpret this in terms of the Hopf map? Why can‘t one see 

the complexities of knot theory in framed bordism?) Now  is naturally 

farmed in etc. So we can suspend the linking number 1 

framing of  to get a framing of this 

represents the generator of  

More generally, one can produce examples of framed manifolds by 

twisting and suspending. If  is a framed submanifold of 
kM  

and then the twist is the framed submanifold  

where The framed  bordism class depends 

only on  V,  and the homotopy class of . (See Exercise 132 below 

for more on this construction.) Next if  k nV ,   is a framed submanifold 

of kS ,  then the suspension of   k nV ,   is a framed submanifold 

 k n k 1V ,S of S  is defined using the obvious framing of 

3S

4 4 5S ,S inS ,

1 3S inS 1 k 1S inS fork 2. 

k

k 1 2S Z . 

 k nV , 

 : V O n ,   V, . 

    . p, p, p .      



Notes 

134 

k k 1 k

0S inS ,withS R

  mapping to the upper hemisphere of  k 1S  . 

Then the generator of  23 S  mentioned earlier can be described by 

first suspending the inclusion of a framed circle in the 2-sphere, and then 

twisting by the inclusion of the circle in O(2). 

To prove Theorem 7.2 we first want to reinterpret 
fr

k n,M in terms of 

normal framings. The key observation is that a farmed submanifold 

determines n linearly independent normal vector fields on M. 

Definition 7.3. 

1. A trivialization of a vector bundle p : E B  with fiber nR  is a 

collection  
n

i i 1
: B E


   of sections which form a basis point wise. 

Thus     1 nb ,..., b  is linearly independent and spans the fiber 
bE  

for each b B.  

Equivalently, a trivialization is a specific bundle isomorphism 

nE B R .  A trivialization is also the same as a choice of section of the 

associated principle frame bundle. 

2. A farming of a vector bundle is a homotopy class of trivializations, 

where two trivializations are called homotopic if there is a continuous 1-

parameter family of trivializations joining them. In terms of the 

associated frame bundle this says the two sections are homotopic in the 

space of sections of the frame bundle. 

A section of a normal bundle is called a normal vector field. 

Definition 7.4. A normal framing of a submanifold V of m is a homotopy 

class of trivializations of the normal bundle  V M . If W is a 

normally framed submanifold of M I,  then the two normally framed 

submanifolds of m given by intersecting W with    M 0 andM 1   

are normally framed bordant. (You should convience yourself that 

restriction of  W M I   to   0V M 0 W   is canonically 

identified with  0V M ).  
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Exercise : Show that a framed submanifold  V,  of M determines a 

normal framing of V in M. use notation from differential geometry and 

denote the standard coordinate vector fields on nR  by 

 1 n/ x ,..., / x .     

Exercise : Define a map from the set of bordism classes of  k n 

dimensional framed submanifolds of M to the set of bordism classes of 

 k n   dimensional normally framed submanifolds of M and show it 

is a bijection. (The existence part of the tubular neighborhood theorem 

will show the map is surjective, while the uniqueness part will show the 

map is injective.)  

Henceforth we let 
fr

k n,M  denote both the bordism classes of framed 

submanifolds and the bordism classes of normally framed submanifolds 

of M. 

Proof of Theorem 7.2. To define an inverse 

n fr

k n,Md : M,S 
      

to the collapse map  

fr n

k n,Mc : M,S
      

One must use differential topology; in fact, this was the original 

motivation for the development of transversality. 

 Any element of nM,S    can be represented by a map 

 n nf :M S R ,     which is smooth in a neighborhood of  1f 0
 

and transverse to 0 (i.e. 0 is a regular value). Thus: 

1. The inverse image  1f 0 V  is a smooth submanifold of kM  of 

codimension n (i.e. of dimension k-n), and 

2. The differential of f identifies the normal bundle of V in kM  with the 

pullback of the normal bundle of n0 S  via f. More precisely, the 

differential of f, k ndf : TM TS restricts to kTM |V  and factors 

through the quotient  to give a map of vector bundles  kV M



Notes 

136 

 

Which is an isomorphism in each fiber. 

 

Since the normal bundle of 0 in is naturally framed by the 

standard basic, the second assertion above implies that the normal bundle 

of 
kV inM is also framed, i.e. there is a bundle isomorphism 

 

The map d is defined by sending    1f to f 0
 with the above framing. 

To see that d is well-defined, consider a homotopy 

nF :M I S .   

Where  M 0,1
F|


 is transverse to n0 S .  Consider the ―trace of F‖ 

    

nF̂ :M I S I

m,t F m,t ,t ,

  

 

Which has the advantage that it takes boundary points to boundary 

points. The (relative) transversality approxiamation theorem says that F̂  

is homo-topic   relM 0,1  to a map transverse to 0 I.  The inverse 

image of 0 I equipped with an appropriate normal framing gives a 

normally framed bordism between    1

M 0
F| 0


 and    1

M 1
F| 0 .


 

Our final task is to show that c and d are mutual inverses. It is easy to see 

that c d  is the identity takes some work. First represent an element of 

 nR  
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nM,S    by a map f transverse to  n n0 R S .     It seems plausible 

that the collapse map associated to  1V f 0 with the normal framing 

induced by df is homotopic to f, but there are technical details. Here 

goes. Let  V M ,let g : M    be a tubular neighborhood of 

V, assume   has a metric, and let   D g D  correspond to the disk 

bundle. Define     n 1

t 0: R by x lim t f g tx .

     Then 

 x  is the velocity vector of a curve, and by the chain rule  is the 

composite of the identification of   with  V   and df dg. In 

particular gives an isomorphism from each fiber of ntoR .  

There is a homotopy  n

tf : D R for 1 t 1       given by 

     tf g x x if 1 t 0,    
 

We now have a map 

           nD 1,1 M IntD 1 M IntD 1 S 0             Defined by 

tf  on the first piece, by f on the second piece, and by the constant map at 

infinity on the third piece. This extends to a map 

     nM IntD 1,1 S 0      by the Tietze extension theorem. 

We can then paste back in 
tf  to get a homotopy 

  nF :M 1,1 S  
 

From our original f to a map h so that  

1 n nh R IntD V R     

Where the diffeomorphism   is defined by mapping to V by using the 

original tubular neighborhood and by mapping to nR byh.  Thus f h  

where h is in the image of c. It follows the c is surjective and thus that c 

and d are mutual inverses. 

In reading the above proof you need either a fir amount of technical skill 

to fill in the details or you need to be credulous. For an alternate 

approach see [27, Chapter 7]. 

For a real vector bundle over a point, i.e. a vector space, a framing is the 

same as a choice of orientation of the vector space, since  GL n,R  has 

two path components. Thus a normal framing of kV S  induces an 
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orientation on the normal bundle  kV S .  (See Section 10.7 for more 

information about orientation.) 

Exercise: Let V be a normally framed submanifold of a manifold M. 

Show that an orientation of M induces an orientation of V. (Hint: 

Consider the isomorphism 
VTV TM/ .   ) 

Theorem 7.5 (Hopf degree theorem). Let 
kM  be a connected, closed, 

smooth manifold. 

1. If 
kM  is orientable, then two maps k kM S are homotopic if and 

only if they have the same degree. 

2. If 
kM is nonorientable, then two maps k kM S are homotopic if and 

only if they  have the same degree mod 2. 

Exercise : Prove the Hopf degree theorem in two ways: obstruction 

theory     and theory and framed bordism. 

The function n k n

kS S ,S      obtained by forgetting base points is a 

bijection. For n >1 this follows from the fact that 
nS is simply connected 

and so vacuously the fundamental group acts trivially. For n=1 this is 

still true because 
1

kS  is trivial for k > 1 and abelian for k=1. 

The result that n

nS Z   is a nontrivial result in algebraic topology; it is 

cool that this can be proven using differential topology. 

Exercise. We only showed that the isomorphism of theorem 7.2 is a 

bijection of sets. However, since 
n

nS  is an abelian group, the framed 

bordism classes inherit an abelian group structure. Prove that this group 

structure on framed bordism is given by taking the disjoint union: 

    k k k

0 1 0 1V V : V IIV S S S   
 

With negatives given by changing the orientation of the framing 

(e.g.replacing to first vector field in the framing by its negative) 

   0 1V V .  
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We wil generalize Theorem 7.2 by considering the effect of the 

suspension map n n 1

k k 1S: S S 

    and eventually passing to the limit 

n 1

klim S .

   This has the effect of eliminating the thorny embedding 

questions of submanifolds in 
kS ;  in the end we will be able work with 

abstract framed manifolds V without reference to an embedding of V in 

some sphere. 

Exercise : (The J-homorphism) Let k n kV M   be a non-empty normally 

framed manifold. Used Twisting to define a function 

 k n k nJ : V ,O n M ,S .        

Now let V be the equatorial k n kS S   with the canonical framing 

coming from the inclusions k n k n 1 kS S ... S ,     and show that the 

function  

   n

k n kJ : O n S  
 

is a homomorphism provided k > n. It is called the J-homomorphism and 

can be used to construct interesting elements in n

kS . 

Draw and explicit picture of a framed circle in  3 3R S   representing 

 J t where  1t O 2 Z   is the generator. 

7.3 SUSPENSION AND THE 

FREUDENTHAL THEOREM 
 

Recall that (reduced) suspension of a space *X K  with no degenerate 

base point is the space 

SX X I/   

Where the subspace     0x I X 0,1    is collapsed to a point. This 

construction is functorial with respect to based maps f : X Y.  In 

particular, the suspension defines a function 

   
0 0

S : X,Y SX,SY .
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By proposition 6.35, k k 1SS S ,  so that when kX S , the suspension 

defines a function, in fact a homorphism 

   k k 1S : Y SY  
 

For any space Y. Taking Y to be a sphere one obtains 

   n n 1

k k 1S : S S .

  
 

We next identify k k 1 kS S SS  as the equator, and similarly 

n n 1S S , and interpret the above map in terms of framed bordism. 

If k nf : S S  is smooth, then the suspension 

k 1 n 1Sf : S S   

Is smooth away from the base points. If nx S is a regular value 

different from the base point, and  1V f x is the normally framed 

submanifold of kS associated to f, then clearly 

   
1 k k 1V Sf x S S .
   

 

Let us compare normal bundles and normal framings. 

     

 

K 1 k k k 1

k

V

V S V S S S |V

V S

       

   
 

Where 
V V R    trivial line bundle. 

Similarly,      
n 1 n

x
x S x S ,       and the differential of Sf 

preserves the trivial factor, since, locally (near the equator 
k k 1S S  ), 

   k nSf f Id : S , S , .      
 

We have shown the following. 

Theorem 7.6. Taking the suspension of a map corresponds, via the 

Pontrjagin- Thom construction, to the same manifold V, but embedded in 

the equation k k 1S S  , and with normal framing the direct sum of the 

old normal framing and the trivial 1-dimensional framing. 
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Now consider the effect of multiple suspensions. 

n n

k kS : S S 

    

For each suspension, the effect on the normally framed submanifold V is 

to replace it by the same manifold embedded in the equator, with the new 

normal framing 
new old V .     Thus after suspensions, 

new old V .     

The following fundamental result is the starting point for the 

investigation of ―stable‖ phenomena in homotopy theory. We will not 

give a proof at this time, since a spectral sequence proof is the easiest 

way to go. The proof is given in Section 10.3. 

Theorem 7.7 (Freudenthal suspension theorem). Suppose that X is an 

 n 1   connected space  n 2 .  Then the suspension homomorphism 

K k 1S : X SX    

Is an isomorphism if k<2n-1 and an epimorphism if k=2n-1. 

The most important case is when nX S ,  and here Freudenthal 

suspension theorem can also be given a differential topology proof using 

framed bordism and the facts that any j-manofold embeds in nS  for 

n 2j 1,   uniquely up to isotopy if n 2j 2,   and that any embedding 

of a j-manifold in n 1S   is isotopic to an embedding in if n 2j 1.   

Exercise: Show that for any k-dimensional CW-complex X and for any 

(n-1)-connected space  y n 2  the suspension map 

   
0 0

X,Y SX,SY
 

Is bijective if k 2n 1   and surjection of  (Hint:Instead 

consider the map  Convert the map Y SY  to a 

fibration and apply cross-section obstruction theory as well as the 

Freudenthal suspension theorem). 

For a based space 
n n

0
X, X X,S      is called the n-th cohomotopy set. If 

X is a CW-complex with dim X 2n 1,   then Exercise 133 implies that 

nS

k 2n 1. 

   
0 0

X,Y X, SY . 
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nX  is a group structure given by suspending and using the suspension 

coordinate in SX. The reader might ponder the geometric meaning 

(framed bordism) of the cohomotopy group structure when X is a 

manifold. 

Definition 7.8. The k-th stable homotopy group of a based space X is the 

limit 

S

kX lim S X.   

The stable k-stem is 

S S 0

k kS .    

The computation of the stable k-stem for all k is the holy grail of the 

field of homotopy theory. 

The Hurewicz theorem implies that if X is connected, then SX is 

n-connected, since  if  and  if X is path 

connected. The following corollary follows from this fact and the 

Freudenthal theorem. 

Corollary 7.9. If X is path connected, 

 

For the stable k-stem, 

   S k 2

k 2k 2 kS S for k 2..

       
 

Recall from Equation(6.3) that      k kO n 1 O n ,    induced by 

the inclusion    O n 1 O n ,   is an isomorphism for k n 2,  and 

therefore letting     n kO lim O n , O n   for k n 2.  It follows 

from the definitions that the following diagram commutes 

 

 n 1 

1H SX H X 0  n 1SX 0 

   S k

k 2k kX S X S X for k.     
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With the horizontal maps the J-homomorphisms, the left vertical map 

induced by the inclusion and the right vertical map the suspension 

homomorphism. If k n 2,  then both vertical maps are isomorphisms, 

and so one obtains the stable J-homomorphism 

  S

k kJ : O .  
 

Corollary 7.10. The Pontrjagin-Thom construction defines an 

isomorphism from S

k  to the normally framed bordism classes of 

normally framed k-dimensional closed submanifolds of   n

kJ : O S   

for any n 2k 2.    

7.4 STABLE TANGENTIAL FRAMINGS 
 

We wish to remove the restriction that our normally framed manifolds be 

submanifolds of  To this end we need to eliminate the reference to the 

normal bundle. This turns out to be easy and corresponds to the fact that 

the normal and tangent bundles of a submanifold of 
nS .  are inverses in a 

certain stable sense. Since the tangent bundle is an intrinsic invariant of a 

smooth manifold, and so is defined independently of any embedding in 

kS ,  this will enable us to replace normal framings with tangential 

framings. On the homotopy level, however, we will need to take 

suspensions whendescribing in what way the bundles are inverses. In the 

end this means that we will obtain an isomorphism between stably 

tangentially framed bordism classes and stable homotopy groups. 

In what follows, 
j  will denote a trivialized j-dimenasional real bundle 

over a space. 

Lemma 7.11. Let k nV S  be a closed, oriented, normally framed sub-

manifold of nS . Then 

1. A normal framing  n n k: V S      induces a trivialization 

n k 1 n 1: TV .      

2.  A trivialization k 1: TV .    induces a trivialization 
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 n k 1 n 1V S .    
 

Proof. The inclusion n n 1S R   has a trivial 1-dimensional normal 

bundle which can be framed by choosing the outward unit normal as a 

basic. This shows that the once stabilized tangent bundle of 
nS  is 

canonically trivialized 

n n 1TS   

Since the tangent bundle of n 1R   is canonically trivialized. 

There is a canonical decomposition 

   n n

VTS | V S TV .     
 

Using the trivialization of ,nTS one has a canonical isomorphism 

 1 .n nV S TV    
 

Thus a normal framing  :  k n kV S   induces an isomorphism 

,n k n k TV       

And, conversely a trivialization 1:   kTV  induces an 

isomorphism 

  1n k n kV S    
 

Definition 7.12. A stable (tangential) framing of an k-dimensional 

manifold V is an equivalence class of trivializations of 

nTV   

 Where 
n  is the trivial bundle .nV R  Two trivializations 

1 1 2 2

1 2: , :
n k n n k n

t TV t TV
 

    
 

Are considered equivalent if there exists some N greater than 1 2n and n
 

such than the direct sum trivializations 

1 1 1 1

1 : :
n N n k n N n k Nt Id TV

         
 

And 

2 2 2 2

2 : :
n N n k n N n k Nt IId TV

         
 

Are homotopic. 
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Similarlay, a stable normal framing of a submanifold V of S  is an 

equivalence class of trivializations of   nV S  and a stable 

framing of a bundle   is an equivalence class of trivializations of 

.n  

A tangential framing is easier to work with than a normal framing, since 

one does not need to refer to an embedding  nV S  to define a tangential 

framing. However, stable normal framings and stable tangential framings 

are equivalent; essentially because the tangent bundle of 
nS  is 

canonically stably framed. Lemma 7.11 generalizes to give the following 

theorem. 

Theorem 7.13. There is a 1-1 correspondence between stable tangential 

framings and  stable normal framing of a manifold V. More precisely: 

1. Let :  ni V S  be an embedding. A stable framing of TV determines 

stable framing of  i  and conversely. 

2. Let 1

1 : 
n

i V S  and 2

2 : 
n

i V S  be embeddings. For n large enough 

there exists a canonical (up to homotopy) identification 

   1 2

1 2 .
n n n n

i i  
  

 

 A stable framing of  determines one of and vice versa. 

 Proof. 1. The proof of Lemma 7.11 gives a canonical identification 

 

 For all  Associativity of  shows stable framings of the niraml 

bundle and tangent bundles coincide. 

3. Let  and  be embeddings. There is a formal 

proof that stable framings of and  coincide. Namely, a stable 

framing of  determines a stable framing of TV by part 1, which in 

turn determines a stable framing of . However, the full statement of 

part 2 applies to submanifolds with non-trivial normal bundle, and 

theorems from differential topology must be used. 

Choose n large enough so that any two embeddines of V in nS  are 

isotopic. (Tranversality theorems imply that 2 1 n k  suffices.) 

 1i  2i

 n nV S TV    

0.

1

1 : 
n

i V S 2

2 : 
n

i V S

 1i  2i

 1i

 2i



Notes 

146 

The composite 1 11 , 
i jn nV S S  with 11 

jn nS S  the equatorial 

embedding, has normal bundle 

    1

1 1 1 .
n n

j i i  
 

 

Similaraly, the composite 222 , 
jni nV S S  has normal bundle  

    2

2 2 2 .
n n

j i i  
 

 

Then 
2 2j i is isotopic to 

1 1j i , and the isotropy induces an isomorphism 

 

 If  then any self-isotopy is isotopic to the constant 

isotopy, so that the isentificfation is canonical (up 

to homotopy.) 

Definition 7.14. Two real vector bundles E, F over V are called stably 

equivalent if there exists non-negative integers I,j so that iE  and 

iF  are isomorphic. 

 Since every smooth compact manifold embeds nS  for some n, the 

second part of Theorem 7.13 has the consequence that the stable normal 

bundle (i.e. the stable equivalence class of the normal bundle for some 

embedding) is a well defined invariant of a smooth manifold, 

independent of the embedding, just as the tangent bundle is. However, 

something stronger holds. If  1i  and  2i  are normal bundles of two 

different embeddings of a manifold in a sphere, then not only are  1i  

and  2i stably equivalent, but the stable isomorphism is determined up 

to homotopy. 

 Returinig to bordism. We sww that the inclusion 1n nS S  sets up a 

correspondence between the suspension operation and stabilizing a 

normal (or equivalently tangential) framing. Consequently Corollary 

7.10 can be restated as follows. 

   2 2 1 1 .j i j i 

 2 1 1,n k  

   2 2 1 1 .j i j i 
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 Corollary 7.15. The stable k-stem 
S

k  is isomorphic to the stably 

tangentially framed bordism classes of stably tangentially framed k-

dimensional smooth, oriented manifolds without boundary. 

 This statement is more appealing since it refers to k-dimensional 

manifolds intrinsically without reference to an embedding in some .nS  

 Here is a list of some computations of stable homotopy groups of 

spheres for you to reflect on. (Note: 
S

k  has been computed for 64.k 

There is no reasonalble conjecture for 
S

k  for general k, although there 

are many results known. For example, in Chapter 10, we will show that 

the groups are finite for 
00; Sk Z  by the Hopf degree theorem.) 

 

23† /16 / 8 / 2 / 9 / 3 / 5 / 7 /13.S is Z Z Z Z Z Z Z Z       
 

The reference [32] is a good source for the tools to compute .S

k  We will 

give stably framed manifolds representing .S

k  for k <9; you may 

challenge your local homotopy theorist to supply the proofs. In this range 

there are (basically) two sources of framed manifolds:normal framings 

on spheres coming from the image of the stable J-homomorphism 

 : , S

k kJ O   and tangential framing coming from Lie groups. There 

is considerable overlap between these sources. 

 Bott periodicity (Theorem 6.49) computes  k O . 
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 Then :  S

k kJ O   is an isomorphism for k=1, and epimorphism for k 

= 3, 7, and a monomorphism for k= 8. 

 Another source for framed manifolds are Lie groups. If G is a compact 

k-dimensional Lie group and   kT G R  is an identification of its tangent 

space at the identity, then one can use the group multiplication of 

identify and thereby frame the tangent bundle. This is the 

so-called Lie invariant framing. The generators of the cyclic groups 

0 1 2 3 4 5 6 7, , , , , , ,S S S S S S S S         are given by e, 1 1 1 3 3 3 7, , , , S S S S S S S  

with invariant framings. (The unit octonions 7S  fail to be a group 

because of the lack of associativity, but nonetheless, they do have an 

invariant framing.) 

 Finally, the generators of 8

S  are given by 8S  with framing given by the 

J-homomorphism and the unique exotic sphere in dimension 8. (An 

exotic sphere is a smooth manifold homeomorphic to a sphere and not 

diffeomorphic to a sphere.) 

 We have given a bordism description of the groups  If X is any 

space 
S

k X can be given a bordism description also. In this case one adds 

the structure of a map from the manifold to X. (A map from a manifold 

to a space X is sometimes called a singular manifold in X.) 

Definition 7.16. Let be two stably framed 

k-manifolds and  two maps. 

 We say  is stably framed bordant to  over X if 

there exists a stably framed bordism  from  to  and 

a map  

 

kTG G R 

.S

k

 , : , 0,1   a k a

i i iV TV i

: , 0,1 i ig V X i

 0 0 0, ,V g  1 1 1, ,V g

 ,W T
 0 0,V   0 0,V 

:G W X
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Extending go and g1. 

We introduce the notation: 

1. Let 
X   denote X II pt, the union of X with a  disjoint base point. 

2. Let   fr

k X  denote the stably framed bordism classes of stably 

framed k-manifolds over X. Since every space maps uniquely to point, 

and since 0 ,S pt  we can restate Corollary 7.15 in this notation as 

   fr S

k kpt pt  
 

Since every space maps uniquely to point, and since 
0 ,S pt  we can 

restate Corollary 7.15 in this notation as  

   fr S

k kpt pt  
 

Since    0 . S S S

k k kS pt    

More generally one can easily prove the following theorem. 

Therorem 7.17.    . fr S

k kX X  

 The proof of this theorem is essentially the same as for ;X pt  one just 

has to carry the map V X  along for the ride. We give an outline of the 

argument and indicate a map    . S fr

k kX X  

Sketch of proof. Choose  large so that    .   S

k kX X S   

 The smash product /     X S S X vS X S X pt is calles the 

half smash of X and S  and is depicted in the following picture. 

 



Notes 

150 

 Given : ,

 kf S X S  make f transverse to  ,X x  where x S  is 

a point different from the base point. (You should think carefully about 

what transversalitymeans since X is just a topological space. The point is 

that smoothness is only needed in the normal directions, since one can 

project to the sphere.) 

Then   1  f X x V  is a smooth, compact manifold, and since a 

neighborhood of    X x in X S  is homeomorphic to X R  as 

indicated in the following figure, 

 

The submanifold V has a framed normal bundle, and

 | : .  Vf V X x X  This procedure shoes how to associate a stably 

framed manifold with a map to X to a (stable) map : .

 kf S X S  

One can show as before, using the Pontrjagin-Thom construction, that 

induced map        fr

k kX S X  is an isomorphism. 

Exercise : Define the reverse map    . fr S

k kX X  

Spectra 

The collection of spheres,  
0
,





n

n
S  together with the maps (in fact 

homeomorphisms) 

1: n n

nk SS S 
 

Forms a system of spaces and maps from which one can construct the 

stable homotopy groups  .S

n X  Another such system is the collection 

of Elienberg- MacLane spaces  .S

n X  from which we can recover the 
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cohomology groups by the identification    ; , ,   
nH X Z X K Z n s 

according the results of Chapter 7. 

 The notion of a spectrum abstracts from these two examples and 

introduces a category which measures ―stable‖ phenomena, that is, 

phenomena which are preserved by suspending. Recall that nH  and by 

definition    1 .S S

n nX SX   Thus cohomology and stable homotopy 

groups are measuring stable information about a space X. 

Definition 7.18. A spectrum is a sequence of pairs  ,n nK k  where the 

nK  are based spaces and 
1: n n nk SK K  are basepoint preserving maps, 

where 
nSK  denotes the suspension. 

 In Exercises 95 you saw that the n-fold reduced suspension of 
nS X  of 

X is homeomorphic to nS X  Thus we can rewrite the definition of stable 

homotopy groups as 

 limS

n nX S X   
 

Where the limit is taken over the homomorphisms 

   1

1 .n nS X S X  

    
 

Those homomorphisms are composites of the suspension  

    1

1 .n nS X S S X  

    
 

The identification      1S X,.     S S X S X S S  and the map 

    1

1 1



     n nS S X S X   induced by the map 

  1: .k S S S  

 Thus we see a natural link between the sphere spectrum 

  1, :n n n

nS S k S S S  
 

And the stable homotopy groups 
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   lim .S

n nX S X   
 

 Another example is provided by oridinary integral homology. The path 

space fibration and the long exact sequence in homotopy, shows that the 

loop space of the Eilenberg-MacLane spce 

   lim .  S

n nX S X   is homotopy equivalent to  , .K Z n  

Fixing a model for V for each n, there exists a sequence of homotopy 

equivalences 

   : , , n 1 .nh K Z n K Z 
 

Then 
nh  defines, by taking its adjoint, a map 

    :S , ,n 1 .nk K Z n K Z 
 

In this way we obtain the Eilenbery-MacLane spectrum 

    , , k .nK Z K Z n
 

Have seen in Theorem 7.22 that    ; , , .   
nH X Z X K Z n  

 Ordinary homology and cohomology are derived from the Eilenberg-

MacLane spectrum, as the next theorem indicates. This point of view 

generalizes to motivate the definition of homology and cohomology with 

respect to any spectrum. 

Theorem 7.19. For any space X, 

1.     , lim , .   n n nH X Z X K Z  

2.      
0

, lim , , 
   

n

nH X Z S X K Z n  

Recall that for 0,n        1 1 ; 

    n n n nH X H X H SX H SX  in 

fact the diagram 
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Commutes. This shows that we could have defined the cohomology of a 

space by 

   
0

; lim ; , ,nH X Z S X K Z n 
    

And verifies the second part of this theorem. The first part can be proven 

by starting with this fact and using Spanier-Whitehead duality. See the 

project on Spanier-Whitehead duality at the end of this chapter. 

These two examples and Theorem 7.19 leads to the following definition. 

Recall that 
X  denotes the space X with a disjoint base point. In 

particular, if  then  if A is non-empty and 

equals 
X  if A is empty. 

Definition 7.20. Let  , n nK K K  be a spectrum. Define the (unreduced) 

homology and cohomology with coefficients in the spectrum K to be the 

functor taking a space X to the abelian group 

   ; lim    n nH X K X K  

And 

   
0

; lim ; .n nH X K S X K  
     

The reduced homology and cohomology with coefficients in the 

spectrum K to be the functor taking a based space X to the abelian group 

   ; limn nH X K X K  
 

And 

,A X  / /X A X A  
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0

; lim X; ,n nH X K S K 
     

 And the homology and cohomology of a pair with coefficients in the 

spectrum k to be the functor taking a pair of space (X,A) to the abelian 

group 

    /, ; limn n AH X A K X K
   

 

And 

   
0

, ; lim X / ,n nH X A K S X A K   
     

It is a theorem that these are generalized  co  homology theories; they 

satisfy all the Eilenberg-Steenrod axioms except the dimension axiom. 

We will discuss this is more detail later. 

For example, stable homology theory  ;  S

n nH X S X  is a reduced 

homology theory; framed bordism    ;  S fr

n n nH X S X X  is an 

unreduced homology theory. 

Note that  pt;KnH  can be non-zero for 0,n  for example 

 pt;S . S

n nH  Ordinary homologty is characterized by the fact that 

 pt 0nH  for 0,n  (see Theorem 1.31). The groups  pt;KnH are 

called the coefficients of the spectrum. 

There are many relationships between homology, unreduced homology, 

suspension, and homology of pairs, some of which are obvious and some 

of which are not. We list some facts for homology. 

 For a based space    1,H ; ; .n nX X K H SX K  

 For a space    ,H ; ; .n nX X K H X K  

  For a pair of spaces,    ,H , ; / ; .n nX X A K H X A K  

  For a CW-pair,  H , ;n X A K  fats into the long exact sequence of 

a pair. 
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Check your progress 

1. Prove: Let  be a closed, oriented, normally framed sub-

manifold of . Then A normal framing  induces a 

trivialization 

 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

2. Prove: There is a 1-1 correspondence between stable tangential 

framings and  stable normal framing of a manifold V. More precisely: 

Let  be an embedding. A stable framing of TV determines 

stable framing of  and conversely. 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

3. Explain about Suspension and Frudenthal theorem. 

__________________________________________________________

__________________________________________________________

_________________________________________________ 

7. 5 LET US SUM UP 
 

1. The collapse map induces a bijection fr n

k n,M M,S .
      

This method of translating between bordism and homotopy sets is called 

the     Pontrjagin-Thom construction. 

2. Taking the suspension of a map corresponds, via the Pontrjagin- 

Thom construction, to the same manifold V, but embedded in the 

equation k k 1S S  , and with normal framing the direct sum of the old 

normal framing and the trivial 1-dimensional framing. 

3. Let k nV S  be a closed, oriented, normally framed sub-manifold of 

nS . Then 

k nV S

nS  n n k: V S    

n k 1 n 1: TV .    

:  ni V S

 i
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A normal framing  n n k: V S      induces a trivialization 

n k 1 n 1: TV .      

7. 6 KEY WORDS 
 

Framed bordism 

 Homotophy groups of spheres 

Eilenberg-MacLane spce 

Cohomology 

Tangential framings 

7.7 QUESTIONS FOR REVIEW 
 

1. Explain about homotopy groups of spheres 

2. Explain about tangential framings 

3. Explain about Frudenthal theorem 
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7.9 ANSWER TO CHECK YOUR 

PROGRESS 
 

1. See section 7.2 

2. See section 7.4 

3. See section 7.3 

 

 

 

 

 

 

 


